A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep Learning Staging of Liver Iron Content From Multiecho MR Images. | LitMetric

Background: MRI represents the most established liver iron content (LIC) evaluation approach by estimation of liver T2* value, but it is dependent on the choice of the measurement region and the software used for image analysis.

Purpose: To develop a deep-learning method for unsupervised classification of LIC from magnitude T2* multiecho MR images.

Study Type: Retrospective.

Population/subjects: A total of 1069 thalassemia major patients enrolled in the core laboratory of the Myocardial Iron Overload in Thalassemia (MIOT) network, which were included in the training (80%) and test (20%) sets. Twenty patients from different MRI vendors included in the external test set.

Field Strength/sequence: A5 T, T2* multiecho magnitude images.

Assessment: Four deep-learning convolutional neural networks (HippoNet-2D, HippoNet-3D, HippoNet-LSTM, and an ensemble network HippoNet-Ensemble) were used to achieve unsupervised staging of LIC using five classes (normal, borderline, middle, moderate, severe). The training set was employed to construct the deep-learning model. The performance of the LIC staging model was evaluated in the test set and in the external test set. The model's performances were assessed by evaluating the accuracy, sensitivity, and specificity with respect to the ground truth labels obtained by T2* measurements and by comparison with operator-induced variability originating from different region of interest (ROI) placements.

Statistical Tests: The network's performances were evaluated by single-class accuracy, specificity, and sensitivity and compared by one-way repeated measures analysis of variance (ANOVA) and one-way ANOVA.

Results: HippoNet-Ensemble reached an accuracy significantly higher than the other networks, and a sensitivity and specificity higher than HippoNet-LSTM. Accuracy, sensitivity, and specificity values for the LIC stages were: normal: 0.96/0.93/0.97, borderline: 0.95/0.85/0.98, mild: 0.96/0.88/0.98, moderate: 0.95/0.89/0.97, severe: 0.97/0.95/0.98. Correctly staging of cases was in the range of 85%-95%, depending on the LIC class. Multiclass accuracy was 0.90 against 0.92 for the interobserver variability.

Data Conclusion: The proposed HippoNet-Ensemble network can perform unsupervised LIC staging and achieves good prognostic performance.

Evidence Level: 4 TECHNICAL EFFICACY: Stage 2.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.28300DOI Listing

Publication Analysis

Top Keywords

sensitivity specificity
12
liver iron
8
iron content
8
t2* multiecho
8
external test
8
lic staging
8
test set
8
accuracy sensitivity
8
lic
7
staging
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!