Surface Engineering of Conjugated Polybenzothiadiazoles and Integration with Cobalt Oxides for Photocatalytic Water Oxidation.

Chemistry

Sauvage Center for Molecular Sciences and, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China.

Published: September 2022

Conjugated polymers feature promising structure and properties for photocatalytic water splitting. Herein, a hydrolysis strategy was demonstrated to rationally modulate the surface hydrophilicity and band structures of conjugated poly-benzothiadiazoles. High hydrophilicity not only enhances the dispersions of polymeric solids in an aqueous solution but also reduces the absorption energy of water molecules. Besides, both theoretical and experimental results reveal that a more positive valence band potential is generated, which contributes to enhancing the photocatalytic water oxidation performance. Accordingly, the surface-modified conjugated polymers show largely promoted photocatalytic water oxidation activities by deposition of cobalt oxides as cocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202201244DOI Listing

Publication Analysis

Top Keywords

photocatalytic water
16
water oxidation
12
cobalt oxides
8
conjugated polymers
8
water
5
surface engineering
4
conjugated
4
engineering conjugated
4
conjugated polybenzothiadiazoles
4
polybenzothiadiazoles integration
4

Similar Publications

Composite photocatalysts based on metal nanoparticles and functional polymers attract much attention compared to inorganic photocatalysts. In this study, a reusable magnetite/anion exchanger (FeO/PPE-2) functional material is synthesized by a hydrothermal method, and its photocatalytic activity is evaluated for the photocatalytic degradation of Rhodamine B (RhB). The results from materials characterization confirm a well-defined morphology of magnetic FeO/PPE-2 functional material and the formation of FeO nanocrystals with different shapes and sizes on the surface of anion exchange material (PPE-2).

View Article and Find Full Text PDF

Unveiling the role of NiFeM hydroxide (M = Pt, Ru, Ir, Rh) cocatalysts for robust H production in photocatalytic water splitting.

Chem Commun (Camb)

January 2025

Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007, China.

In this study, the NiFe-LDH doped with different Pt group metals (Pt, Ru, Ir, Rh) was prepared as a cocatalyst for photocatalytic H production over g-CN. It is found that the doped NiFe-LDH loaded g-CN generally displays higher photocatalytic activity than the raw NiFe-LDH modified one, where the NiFeRu-LDH loaded g-CN shows the optimal H evolution rate of 77.4 μmol h, about 5.

View Article and Find Full Text PDF

Template-free synthesis of single-crystal SrTiO nanocages for photocatalytic overall water splitting.

Chem Commun (Camb)

January 2025

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

In this study, we present a novel approach to achieve the template-free fabrication of nanocage-shaped SrTiO (N-STO) single crystals molten salt flux treatment. Systematic characterizations demonstrate the high crystallinity and low defect density of N-STO. The N-STO single crystals enable overall water splitting (OWS) with hydrogen and oxygen evolution rates of 100.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have shown significant potential in the photocatalytic activation of peroxydisulfate (PDS). Although many MOFs have been investigated for their ability to activate PDS, the impact of structural interpenetration on this process remains underexplored. In this study, MIL-88D(FeNi) and MIL-126(FeNi) were selected to systematically study this effect.

View Article and Find Full Text PDF

Type II/Schottky heterojunctions-triggered multi-channels charge transfer in Pd-TiO-CuO hybrid promotes photocatalytic hydrogen production.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:

Rapid charge recombination, limited light response, and slow surface reactions were observed in the photocatalysts, thereby limiting their future-oriented applications in photocatalytic hydrogen production through water splitting. Constructing a multi-channel charge separation photocatalysis system could solve those questions. In this study, Pd-TiO-CuO composites were successfully accomplished via a facile chemical reduction method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!