New Reactive Force Field for Simulations of MoS Crystallization.

J Phys Chem C Nanomater Interfaces

Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 16627 Prague 6, Czech Republic.

Published: June 2022

We present a new reactive force field (ReaxFF) parameter set for simulations of Mo-S structures. We compare our parameterization to the state-of-the-art ones in their performance against density functional theory (DFT) benchmarks and MoS crystallization simulations. Our new force field matches DFT data significantly better than any previously published force fields and provides a realistic layered MoS structure in crystallization simulations. It significantly improves the state-of-the-art force fields, which tend to crystallize in the experimentally unknown rock-salt MoS structure. Therefore, our new force field is a good candidate for further development and inclusion of other practically relevant elements, such as O, C, N, and H, which can be used to study the formation and tribological or catalytical properties of molybdenum disulfide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189924PMC
http://dx.doi.org/10.1021/acs.jpcc.2c01075DOI Listing

Publication Analysis

Top Keywords

force field
16
reactive force
8
mos crystallization
8
crystallization simulations
8
force fields
8
mos structure
8
force
5
field
4
simulations
4
field simulations
4

Similar Publications

In the decision-making process for investing in heritage buildings (HBs), various factors such as costs, interests, and tenancy terms influence investors decisions. Understanding the motivations of these investors can facilitate the involvement of social forces with diverse interests in adaptive reuse projects. This paper examines the primary barriers to revitalizing heritage buildings through adaptive reuse decision-making.

View Article and Find Full Text PDF

Enantiomeric separation of chiral molecules is pivotal for exploring fundamental questions about life's origin and many other fields. Crystallisation is an important platform for the separation of chiral molecules, elegantly applied to many systems, for instance, the formation of conglomerates, where the enantiomers crystallise as separate phases. Many approaches have been proposed to explore crystallisation-driven enantiomeric separation with fewer insights into the complex pathways associated with the separation processes.

View Article and Find Full Text PDF

Neutral lipids restrict the mobility of broken DNA molecules during comet assays.

Biol Cell

January 2025

Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, Montpellier, France.

One widespread technique to assess in relative terms the amount of broken DNA present in the genome of individual cells consists of immobilizing the cell's nucleus under an agarose pad (called the nucleoid) and subjecting the whole genome to electrophoresis to force broken DNA molecules out of it. Since the migrating broken DNA molecules create a tail behind the nucleoid, this technique is named the comet assay. While performing comet assays regularly, we systematically observed circular regions devoid of DNA within the nucleoid region.

View Article and Find Full Text PDF

Effects of In Vivo Contact Force on Pulsed-Field Ablation Efficacy in Porcine Ventricles.

J Cardiovasc Electrophysiol

January 2025

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.

Background: Pulsed-field ablation (PFA) is an innovative non-thermal method for arrhythmia treatment. The efficacy of various PFA configurations in relation to contact force (CF) has not been well-studied in vivo.

Objectives: This study evaluated the effect of CF on acute bipolar PFA lesions in both a vegetal and an in vivo porcine heart model.

View Article and Find Full Text PDF

Some Challenges of Diffused Interfaces in Implicit-Solvent Models.

J Comput Chem

January 2025

Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile.

The standard Poisson-Boltzmann (PB) model for molecular electrostatics assumes a sharp variation of the permittivity and salt concentration along the solute-solvent interface. The discontinuous field parameters are not only difficult numerically, but also are not a realistic physical picture, as it forces the dielectric constant and ionic strength of bulk in the near-solute region. An alternative to alleviate some of these issues is to represent the molecular surface as a diffuse interface, however, this also presents challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!