Hepatitis B is a potentially life-threatening liver infection caused by the hepatitis B virus (HBV). HBV-D1 is the dominant subgenotype in the Mediterranean basin, Eastern Europe, and Asia. However, little is currently known about its evolutionary history and spatio-temporal dynamics. We use Bayesian phylodynamic inference to investigate the temporal history of HBV-D1, for which we calibrate the molecular clock using ancient sequences, and reconstruct the viral global spatial dynamics based, for the first time, on full-length publicly available HBV-D1 genomes from a wide range of sampling dates. We pinpoint the origin of HBV subgenotype D1 before the current era (BCE) in Turkey/Anatolia. The spatial reconstructions reveal global viral transmission with a high degree of mixing. By combining modern-day and ancient sequences, we ensure sufficient temporal signal in HBV-D1 data to enable Bayesian phylodynamic inference using a molecular clock for time calibration. Our results shed light on the worldwide HBV-D1 epidemics and suggest that this originally Middle Eastern virus significantly affects more distant countries, such as those in mainland Europe.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9194798 | PMC |
http://dx.doi.org/10.1093/ve/veac028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!