Background: Case series have reported persistent cardiopulmonary symptoms, often termed long-COVID or post-COVID syndrome, in more than half of patients recovering from Coronavirus Disease 19 (COVID-19). Recently, alterations in microvascular perfusion have been proposed as a possible pathomechanism in long-COVID syndrome. We examined whether microvascular perfusion, measured by quantitative stress perfusion cardiac magnetic resonance (CMR), is impaired in patients with persistent cardiac symptoms post-COVID-19.
Methods: Our population consisted of 33 patients post-COVID-19 examined in Berlin and London, 11 (33%) of which complained of persistent chest pain and 13 (39%) of dyspnea. The scan protocol included standard cardiac imaging and dual-sequence quantitative stress perfusion. Standard parameters were compared to 17 healthy controls from our institution. Quantitative perfusion was compared to published values of healthy controls.
Results: The stress myocardial blood flow (MBF) was significantly lower [31.8 ± 5.1 vs. 37.8 ± 6.0 (μl/g/beat), < 0.001] and the T2 relaxation time was significantly higher (46.2 ± 3.6 vs. 42.7 ± 2.8 ms, = 0.002) post-COVID-19 compared to healthy controls. Stress MBF and T1 and T2 relaxation times were not correlated to the COVID-19 severity (Spearman = -0.302, -0.070, and -0.297, respectively) or the presence of symptoms. The stress MBF showed a U-shaped relation to time from PCR to CMR, no correlation to T1 relaxation time, and a negative correlation to T2 relaxation time (Pearson = -0.446, = 0.029).
Conclusion: While we found a significantly reduced microvascular perfusion post-COVID-19 compared to healthy controls, this reduction was not related to symptoms or COVID-19 severity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197432 | PMC |
http://dx.doi.org/10.3389/fcvm.2022.877416 | DOI Listing |
Ophthalmol Ther
December 2024
Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China.
Introduction: This study aims to summarize the retinal and choroidal microvascular features detected by optical coherence tomography angiography (OCTA) in the affected and fellow eyes of patients with retinal vein occlusion (RVO).
Methods: A comprehensive search of the PubMed, Embase, and Ovid databases was conducted to identify studies comparing OCTA metrics among RVO, RVO-fellow, and control eyes. Outcomes of interest included parameters related to foveal avascular zone (FAZ) and fovea- and optic nerve head (ONH)-centered perfusion measurements of superficial capillary plexus (SCP), deep capillary plexus (DCP), and choriocapillaris layer.
JPRAS Open
March 2025
Department of Plastic and Reconstructive Surgery, The Jikei University School of Medicine, Tokyo, Japan.
Objective: This study evaluated the effectiveness of laser Doppler flowmetry (LDF) in detecting perfusion disturbances during microvascular free tissue transfer.
Methods: Conducted at a single centre from December 2020 to September 2022, this prospective study involved 71 patients mainly undergoing head and neck free flap reconstructions, using the Pocket LDF™ for continuous perfusion monitoring.
Results: Out of the 71 cases, data from 69 cases were analysed after excluding those with significant noise or sensor detachment.
Diabetes
December 2024
Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine.
The COVID-19 pandemic has profoundly affected human health, yet the mechanisms underlying its impact on metabolic and vascular systems remain incompletely understood. Clinical evidence suggests that SARS-CoV-2 directly disrupts vascular homeostasis, with perfusion abnormalities observed in various tissues. The pancreatic islet, a key endocrine mini-organ reliant on its microvasculature for optimal function, may be particularly vulnerable.
View Article and Find Full Text PDFExp Neurol
December 2024
Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuoku, Niigata 951-8585, Japan. Electronic address:
Background: Despite advances in reperfusion therapies, ischemic stroke remains a major cause of long-term disability due to residual hypoxic lesions persisting after macrovascular reperfusion. These residual hypoxic lesions, caused by microvascular dysfunction, represent an important therapeutic target. We previously demonstrated that oxygen-glucose-deprived peripheral blood mononuclear cells (OGD-PBMCs) migrate to ischemic brain regions and promote functional recovery after stroke.
View Article and Find Full Text PDFBiomaterials
December 2024
School of Engineering, Vanderbilt University, Nashville, TN, 37235, USA. Electronic address:
Multiple myeloma (MM), a cancer of bone marrow plasma cells, is the second-most common hematological malignancy. However, despite immunotherapies like chimeric antigen receptor (CAR)-T cells, relapse is nearly universal. The bone marrow (BM) microenvironment influences how MM cells survive, proliferate, and resist treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!