In hip arthroplasties, surgeons rely on their experience to assess the stability and balance of hip tissues when fitting the implant to their patients. During the operation, surgeons use a modular, temporary set of implants to feel the tension in the surrounding soft tissues and adjust the implant configuration. This process is naturally subjective and therefore depends on the operator. Inexperienced surgeons undertaking hip arthroplasties are twice as likely to experience errors than their experienced colleagues, leading to dislocations, pain and discomfort for the patients. To address this issue, a new, 3DOF force measurement system was developed and integrated into the modular, trial implants that can quantify forces and movements intraoperatively in 3D. The prototypes were evaluated in three post-mortem human specimens (PMHSs), to provide surgeons with objective data to help determine the optimal implant fit and configuration. The devices comprise a deformable polymer material providing strain-based displacements measured with electromagnetic-based sensors and an inertial measurement unit (IMU) for motion data. Device results show a relative accuracy of approx. 2% and a sensitivity of approx. 1%. PMHS results indicated that soft tissue forces on the hip joint peak in the order of ~100 N and trend with positions of the leg during range of motion (ROM) tests, although force patterns differ between each PMHS. By monitoring forces and force patterns of hip soft tissues, in combination with standardised ROM tests, the force patterns could shed a light on potential anomalies that can be addressed during surgery. The development of an instrumented hip implant device for use during surgery knowledge will eventually allow us to develop a predictive model for soft tissue balancing, that can be used for pre- and intra-operative planning for each patient on a tailored and personalised basis. Ultimately, we hope that with this device, patients will benefit from a faster recovery, from a more-precisely fitted hip, and an improved quality of life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191686PMC
http://dx.doi.org/10.1109/JTEHM.2022.3174809DOI Listing

Publication Analysis

Top Keywords

soft tissue
12
force patterns
12
implant device
8
range motion
8
hip
8
hip arthroplasties
8
soft tissues
8
rom tests
8
tests force
8
implant
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!