Background: Mesenchymal stem cells (MSCs) is an attractive candidate in regenerative research and clinical trials have assessed their therapeutic potential in different neurological conditions with disparate etiologies. In this systematic review, we aimed to assess safety and clinical effect of MSC treatment in traumatic spinal cord injury (TSCI), multiple sclerosis (MS) and ischemic stroke (IS).

Methods: A systematic search was performed 2021-12-10 in MEDLINE, EMBASE, Web of Science and Cochrane where clinical studies assessing MSC treatment in TSCI, MS or IS were included. Studies without control group were excluded for efficacy analysis, but included in the safety analysis. For efficacy, AIS score, EDSS score and mRS were used as clinical endpoints and assessed in a meta-analysis using the random effects model.

Findings: Of 5,548 identified records, 54 studies were included. Twenty-six studies assessed MSC treatment in TSCI, 14 in MS and nine in IS, of which seven, seven and five studies were controlled, respectively. There were seven serious adverse events (SAEs), of which four were related to the surgical procedure and included one death due to complications following the implantation of MSCs. Three SAEs were considered directly related to the MSC treatment and all these had a transient course. In TSCI, a meta-analysis showed no difference in conversion from AIS A to C and a trend toward more patients treated with MSCs improving from AIS A to B as compared to controls ( = 0.05). A subgroup analysis performed per protocol, showed more MSC treated patients improving from AIS A to C in studies including patients within 8 weeks after injury ( = 0.04). In MS and IS, there were no significant differences in clinical outcomes between MSC treated patients and controls as measured by EDSS and mRS, respectively.

Interpretation: MSC-treatment is safe in patients with TSCI, MS and IS, although surgical implantation of MSC led to one fatal outcome in TSCI. There was no clear clinical benefit of MSC treatment, but this is not necessarily a proof of inefficacy due to the low number of controlled studies. Future studies assessing efficacy of MSC treatment should aim to do this in randomized, controlled studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196044PMC
http://dx.doi.org/10.3389/fneur.2022.891514DOI Listing

Publication Analysis

Top Keywords

msc treatment
24
msc
9
studies
9
safety clinical
8
mesenchymal stem
8
treatment traumatic
8
traumatic spinal
8
spinal cord
8
cord injury
8
multiple sclerosis
8

Similar Publications

Pulmonary fibrosis (PF) is a medical condition that affects the lungs and causes scarring due to the deposition of excess fibrotic tissue. This is often preceded by various causes and can lead to long-term health consequences. The treatment of PF using mesenchymal stem cells (MSCs) to correct lung damage and decrease inflammation is a current focus of research.

View Article and Find Full Text PDF

Comparative breakthrough: Umbilical cord mesenchymal stem cells bone marrow mesenchymal stem cells in heart failure treatment.

World J Cardiol

December 2024

Department of Geriatics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China.

In this article, we evaluate the comparative efficacy and safety of mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and umbilical cord (UC-MSCs) in the treatment of heart failure and myocardial infarction. MSCs have gained importance as living bio drug due to their regenerative potential, with BM-MSCs being the most extensively studied. However, UC-MSCs offer unique advantages, such as noninvasive collection and fewer ethical concerns.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation, and extensive studies have demonstrated their therapeutic potential in atherosclerosis (AS).

Aim: To conduct a bibliometric analysis of studies on the use of MSC therapy for AS over the past two decades, assess key trends and provide insights for future research directions.

Methods: We systematically searched the Web of Science Core Collection database for articles published between 1999 and 2023, yielding a total of 556 articles.

View Article and Find Full Text PDF

Repair effect analysis of mesenchymal stem cell conditioned media from multiple sources on HUVECs damaged by high glucose.

Clin Proteomics

December 2024

Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.

Background: The therapeutic potential of mesenchymal stem cells (MSCs) may be partly attributed to their secretion growth factors, cytokines and chemokines. In various preclinical studies, the use of MSC-conditioned media (CM) has demonstrated promising potential for promoting vascular repair.

Methods: To gain a comprehensive understanding of the variations in conditioned media derived from different sources of mesenchymal stem cells (MSCs) including umbilical cord, adipose and bone marrow, we investigated their reparative effects on human umbilical vein endothelial cells (HUVECs) subjected to damage induced by high glucose.

View Article and Find Full Text PDF

Curcumin liposomes alleviate senescence of bone marrow mesenchymal stem cells by activating mitophagy.

Sci Rep

December 2024

Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.

The senescence of mesenchymal stem cells (MSCs) is closely related to aging and degenerative diseases. Curcumin exhibits antioxidant and anti-inflammatory effects and has been extensively used in anti-cancer and anti-aging applications. Studies have shown that curcumin can promote osteogenic differentiation, autophagy and proliferation of MSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!