Phylogenetic analysis of Starmerella apis in honey bees (Apis mellifera).

J Eukaryot Microbiol

Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.

Published: January 2023

AI Article Synopsis

  • * The study focused on the prevalence and genetic relationships of Starmerella apis in bee colonies from nine different apiaries, with samples taken from the hives.
  • * S. apis was found in 34.44% of samples, and its genetic sequences showed a high similarity to strains from other countries, marking the first phylogenetic analysis of this yeast in Polish honey bees.

Article Abstract

Honey bees are among the most effective pollinators that promote plant reproduction. Bees are highly active in the pollen collection season, which can lead to the transmission of selected pathogens between colonies. The clade Starmerella comprises yeasts that are isolated mainly from bees and their environment. When visiting plants, bees can come into contact with Starmerella spp. The aim of this study was to determine the prevalence and phylogenetic position of S. apis in bee colonies. Bee colonies were collected from nine apiaries in three regions. Ten colonies were sampled randomly from each apiary, and pooled samples were collected from the central part of the hive in each colony. A total of 90 (100%) bee colonies from nine apiaries were examined. Starmerella apis was detected in 31 (34.44%) samples, but related species were not identified. The 18S rRNA amplicon sequences of S. apis were compatible with the GenBank sequences of Starmerella spp. from India, Japan, Syria, Thailand, and the USA. The amplicon sequences of S. apis were also 99.06% homologous with the sequences deposited in GenBank under accession numbers JX515988 and NG067631.This is the first study to perform a phylogenetic analysis of S. apis in Polish honey bees.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jeu.12931DOI Listing

Publication Analysis

Top Keywords

honey bees
12
bee colonies
12
phylogenetic analysis
8
starmerella apis
8
starmerella spp
8
amplicon sequences
8
sequences s apis
8
bees
6
starmerella
5
colonies
5

Similar Publications

The Anatolian honey bee (Apis mellifera anatoliaca) and Bombus terrestris are important species in Türkiye. In this context, protecting the health of these honey bees is particularly important. Lactic acid bacteria (LAB) and acetic acid bacteria (AAB) are very important for the health of bees.

View Article and Find Full Text PDF

Regional patterns and climatic predictors of viruses in honey bee (Apis mellifera) colonies over time.

Sci Rep

January 2025

Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.

Honey bee viruses are serious pathogens that can cause poor colony health and productivity. We analyzed a multi-year longitudinal dataset of abundances of nine honey bee viruses (deformed wing virus A, deformed wing virus B, black queen cell virus, sacbrood virus, Lake Sinai virus, Kashmir bee virus, acute bee paralysis virus, chronic bee paralysis virus, and Israeli acute paralysis virus) in colonies located across Canada to describe broad trends in virus intensity and occurrence among regions and years. We also tested climatic variables (temperature, wind speed, and precipitation) as predictors in an effort to understand possible drivers underlying seasonal patterns in viral prevalence.

View Article and Find Full Text PDF

The global decline in bee populations poses significant risks to agriculture, biodiversity, and environmental stability. To bridge the gap in existing data, we introduce ApisTox, a comprehensive dataset focusing on the toxicity of pesticides to honey bees (Apis mellifera). This dataset combines and leverages data from existing sources such as ECOTOX and PPDB, providing an extensive, consistent, and curated collection that surpasses the previous datasets.

View Article and Find Full Text PDF

This review provides a comprehensive overview of the direct and indirect effects of neonicotinoid pesticides (NEO-P) within African agricultural ecosystems and identifies research gaps, particularly in the monitoring and regulation of pesticide use. We observed a decline in the numbers of NEO-P studies conducted in Africa since 2019 with 40.7% of the countries reporting at least one study to date.

View Article and Find Full Text PDF

Eusociality, characterized by reproductive division of labor, cooperative brood care, and multi-generational cohabitation, represents a pinnacle of complex social evolution, most notably manifested within the Hymenoptera order including bees, ants, and wasps. The molecular underpinnings underlying these sophisticated social structures remain an enigma, with noncoding RNAs (ncRNAs) emerging as crucial regulatory players. This article delves into the roles of ncRNAs in exerting epigenetic control during the development and maintenance of Hymenopteran eusociality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!