Destruction of natural habitats for tree plantations is a major threat to wildlife. These novel environments elicit behavioural changes that can either be detrimental or beneficial to survival and reproduction, with population - and community - level consequences. However, compared with well-documented changes following other forms of habitat modification, we know little about wildlife behavioural responses to tree plantations, and even less about their associated fitness costs. Here, we highlight critical knowledge gaps in understanding the ecological and evolutionary consequences of behavioural shifts caused by tree plantations and discuss how wildlife responses to plantations could be critical in determining which species persist in these highly modified environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tree.2022.05.008 | DOI Listing |
Science
January 2025
Department of Biology & Leverhulme Centre for Nature Recovery, University of Oxford, Oxford, UK.
The impacts of degradation and deforestation on tropical forests are poorly understood, particularly at landscape scales. We present an extensive ecosystem analysis of the impacts of logging and conversion of tropical forest to oil palm from a large-scale study in Borneo, synthesizing responses from 82 variables categorized into four ecological levels spanning a broad suite of ecosystem properties: (i) structure and environment, (ii) species traits, (iii) biodiversity, and (iv) ecosystem functions. Responses were highly heterogeneous and often complex and nonlinear.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China. Electronic address:
Non-grain production of cropland (NGPCL) is a common consequence of rapid urbanization, but excessive NGPCL threatens food security and sustainable cropland use. However, the evolutionary processes and mechanisms of different NGPCL types remain largely unknown, compromising the scientific basis for NGPCL management. Thus, taking rapidly urbanized Deqing as the study area, this research constructed an NGPCL theoretical framework from the perspective of agricultural location, classified NGPCL types using Landsat images, random forest algorithm and Google Earth Engine, and revealed their spatiotemporal changes and different influencing factors through the Multinomial Logit Regression model, and provided targeted zoning and categorized policy suggestions.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan.
Global warming and extreme climate conditions caused by unsuitable temperature and humidity lead to coffee leaf rust () diseases in coffee plantations. Coffee leaf rust is a severe problem that reduces productivity. Currently, pesticide spraying is considered the most effective solution for mitigating coffee leaf rust.
View Article and Find Full Text PDFMicroorganisms
December 2024
Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China.
There are differences in the litter quality and decomposition rate of kiwifruit varieties, but it is not clear whether these differences are related to microbial communities. The leaf litters of two kiwifruit varieties ( cv 'Hongyang' and cv 'Jinyan') were taken as objects, and the structure, diversity, and succession of the soil microbial communities were analyzed using an in situ decomposition experiment. Moreover, the contents of C, N, P, and K in the litters during decomposition were analyzed.
View Article and Find Full Text PDFInsects
December 2024
School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China.
Invasive alien species often undergo shifts in their ecological niches when they establish themselves in environments that differ from their native habitats. Fisher LaSalle (Hymenoptera: Eulophidae), specifically, has caused huge economic losses to trees in Australia. The global spread of cultivation has allowed to threaten plantations beyond its native habitat.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!