Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bayesian methods have recently been proposed to solve inverse kinematics problems for marker based motion capture. The objective is to find the posterior distribution, a probabilistic summary of our knowledge and corresponding uncertainty about the model parameters such as joint angles, segment angles, segment translations, and marker positions. To date, Bayesian inverse kinematics models have focused on a frame by frame solution, which if repeatedly applied gives estimates that are discontinuous in time. We propose to overcome this limitation for continuous, planar inverse kinematics problems via the use of finite basis representations to model latent kinematic quantities as smooth, continuous functions. Our generalised smoothing approach is able to accurately approximate the solution to planar inverse kinematics problems defined by simple systems of ordinary differential equations in addition to considerably more complex systems such as a planar analysis of human gait. Improvements in accuracy are considerable with a decrease in average RMSE of 0.025 rad observed when estimating ankle joint angle for a randomly selected running stride with the proposed generalised smoothing approach compared to previous time-independent approaches. In addition, the generalised smoothing approach is able to effectively estimate kinematic parameters in the presence of missing data along with derivatives of kinematic quantities without the need for prior filtering or gap-filling of data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2022.111158 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!