The nitrogen mustards are powerful cytotoxic and lymphoablative agents and have been used for more than 60 years. They are employed in the treatment of cancers, sarcomas, and hematologic malignancies. Cyclophosphamide, the most versatile of the nitrogen mustards, also has a place in stem cell transplantation and the therapy of autoimmune diseases. Adverse effects caused by the nitrogen mustards on the central nervous system, kidney, heart, bladder, and gonads remain important issues. Advances in analytical techniques have facilitated the investigation of the pharmacokinetics of the nitrogen mustards, especially the oxazaphosphorines, which are prodrugs requiring metabolic activation. Enzymes involved in the metabolism of cyclophosphamide and ifosfamide are very polymorphic, but a greater understanding of the pharmacogenomic influences on their activity has not yet translated into a personalized medicine approach. In addition to damaging DNA, the nitrogen mustards can act through other mechanisms, such as antiangiogenesis and immunomodulation. The immunomodulatory properties of cyclophosphamide are an area of current exploration. In particular, cyclophosphamide decreases the number and activity of regulatory T cells, and the interaction between cyclophosphamide and the intestinal microbiome is now recognized as an important factor. New derivatives of the nitrogen mustards continue to be assessed. Oxazaphosphorine analogs have been synthesized in attempts to both improve efficacy and reduce toxicity, with varying degrees of success. Combinations of the nitrogen mustards with monoclonal antibodies and small-molecule targeted agents are being evaluated. SIGNIFICANCE STATEMENT: The nitrogen mustards are important, well-established therapeutic agents that are used to treat a variety of diseases. Their role is continuing to evolve.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/pharmrev.120.000121 | DOI Listing |
Front Immunol
January 2025
Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
Background: With recent advances in clinical practice, including the use of reduced-toxicity conditioning regimens and innovative approaches such as ex vivo TCRαβ/CD19 depletion of haploidentical donor stem cells or post-transplant cyclophosphamide (PTCY), hematopoietic stem cell transplantation (HSCT) has emerged as a curative treatment option for a growing population of patients with inborn errors of immunity (IEI). However, despite these promising developments, graft failure (GF) remains a significant concern associated with HSCT in these patients. Although a second HSCT is the only established salvage therapy for patients who experience GF, there are no uniform, standardized strategies for performing these second transplants.
View Article and Find Full Text PDFRecenti Prog Med
January 2025
Fondazione Policlinico Universitario A. Gemelli Irccs, Dipartimento di Scienze di Laboratorio ed Ematologiche, Roma.
A 28-year-old woman was diagnosed with high-risk triple-expressor diffuse large B-cell lymphoma (DLBCL) (stage IV, IPI 4, CNS-IPI 5), with lymph node and extranodal involvement. The patient underwent first-line R-CHOP treatment, achieving a partial response with residual mediastinal uptake. A second-line platinum-based therapy with a transplant plan followed, resulting in stable disease; thus, she was considered refractory and started third-line therapy with CAR-T cells, receiving additional chemotherapy as bridging therapy.
View Article and Find Full Text PDFBMC Pulm Med
January 2025
Department of Pulmonary Medicine, National Hospital Organization MinamiKyushu Hospital, 1882 Kida, Aira-Shi, Kagoshima, 899-5293, Japan.
Background: Reports of autoimmune diseases coexisting with autoimmune pulmonary alveolar proteinosis (autoimmune PAP; APAP) are extremely rare. APAP coexisting with autoimmune diseases may often be misdiagnosed as connective tissue disease-associated interstitial lung disease (ILD). Here, we describe a rare case of a patient with systemic sclerosis who was diagnosed with APAP after the exacerbation of lung opacities during treatment with immunosuppressive agents.
View Article and Find Full Text PDFBiomedica
December 2024
acultad de Ciencias de la Salud, Universidad ICESI, Cali, Colombia; Servicio de Alergología e Inmunología Pediátrica, Departamento Materno-Infantil, Fundación Valle del Lili, Cali, Colombia.
Introduction: Inborn errors of immunity is a diverse group of rare diseases caused by over 400 genetic mutations affecting the immune system and increasing infection susceptibility, autoimmunity, and malignancy. Hematopoietic stem cell transplantation offers a curative option for some inborn errors of immunity, with haploidentical donors providing a viable alternative when identical donors are unavailable.
Objective: To determine survival, usefulness of weekly chimerism monitoring, immune reconstitution, and complications in patients with inborn errors of immunity who underwent haploidentical hematopoietic stem cell transplantation at a reference center in Colombia.
BMJ Open
January 2025
Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, People's Republic of China
Objective: To evaluate the cost-effectiveness of polatuzumab vedotin-rituximab-cyclophosphamide, doxorubicin and prednisone (pola-R-CHP) in CD20-positive patients with previously untreated diffuse large B-cell lymphoma (DLBCL) in China.
Design: A Markov model was constructed to analyse the cost-effectiveness of two strategies in CD20-positive patients with previously untreated DLBCL over a lifetime horizon: (1) pola-R-CHP and (2) rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP). The clinical outcomes were obtained from the POLARIX(NCT03274492), SCHOLAR-1, ZUMA-7(NCT03391466) and TRANSFORM(NCT03575351) trials.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!