Innate immune systems are key defenses of animals and particularly important in species that lack the sophisticated adaptive immune systems as found in vertebrates. Here, we were interested to quantify variation in innate immune responses of insects in hosts that differ in their parasite susceptibility. To do this, we studied immune responses in honey bees, which can host a remarkable number of different parasites, which are major contributors of declining bee health and colony losses. The most significant parasite of honey bees is the mite Varroa destructor, which has infested the majority of global honey bee populations, and its control remains a major challenge for beekeepers. However, a number of nonmanaged honey bees seem able to control Varroa infections, for example, the Eastern honey bee Apis ceranacerana or the African honey bee Apis mellifera scutellata. These bees therefore make interesting study subjects to identify underlaying resistance traits, for example, by comparing them to more susceptible bee genotypes such as Western honey bees (A. melliferaligustica). We conducted a series of interlinked experiments and started with behavioral assays to compare the attractiveness of bee larvae to mites using different honey bee genotypes and castes. We found that 6-day-old larvae are always most attractive to mites, independently of genotype or castes. In a next step, we compared volatile profiles of the most attractive larvae to test whether they could be used by mites for host selection. We found that the abundance of volatile compounds differed between larval ages, but we also found significant differences between genotypes and castes. To further study the expected underlaying physiological differences between potentially resistant and susceptible host larvae, we compared the larval hemolymph proteomes of the three honey bee genotypes and two castes in response to mite exposure. We identified consistent upregulation of immune and stress-related genes in Varroa-exposed larvae, which differed between genotypes and castes. Tolerant honey bee castes and genotypes were characterized by stronger or more distinct immune esponses. In summary, we provide first insights into the complex involvement of the innate immune system of tolerant honey bees against mite infestations, which could be used for future breeding purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418504 | PMC |
http://dx.doi.org/10.1016/j.mcpro.2022.100257 | DOI Listing |
Exp Appl Acarol
January 2025
Faculty of Science, Department of Molecular Biology and Genetics, Mugla Sıtkı Koçman University, Mugla, Türkiye.
The Varroa destructor (hereafter referred to as Varroa) is a major pest of honeybees that is generally controlled using pyrethroid-based acaricides. However, resistance to these insecticides has become a growing problem, driven by the acquisition of knockdown resistance (kdr) mutations in the mite's voltage-gated sodium channel (vgsc) gene. Resistance mutations in the vgsc gene, such as the L925V mutation, can confer resistance to pyrethroids like flumethrin and tau-fluvalinate.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany.
Nature offers a bewildering diversity of flower colours. Understanding the ecology and evolution of this fantastic floral diversity requires knowledge about the visual systems of their natural observers, such as insect pollinators. The key question is how flower colour and pattern can be measured and represented to characterise the signals that are relevant to pollinators.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Grupo de Investigación en Ecología de la Polinización, Laboratorio Ecotono, INIBIOMA (CONICET-Universidad Nacional del Comahue), San Carlos de Bariloche, Río Negro, Argentina.
Plant reproduction is influenced not only by individual flower characteristics but also by the arrangement of flowers within inflorescences. In bee-pollinated plants with protandrous flowers in vertical acropetal inflorescences - where male fertile flower structures mature before female ones and basal flowers open first (i.e.
View Article and Find Full Text PDFParasit Vectors
January 2025
Department of Biology, University of Padova, Padova, Italy.
Background: The mite Varroa destructor is the most serious pest of the western honey bee (Apis mellifera) and a major factor in the global decline of colonies. Traditional control methods, such as chemical pesticides, although quick and temporarily effective, leave residues in hive products, harming bees and operators' health, while promoting pathogen resistance and spread. As a sustainable alternative, RNA interference (RNAi) technology has shown great potential for honey bee pest control in laboratory assays, but evidence of effectiveness in the field has been lacking.
View Article and Find Full Text PDFSci Total Environ
January 2025
Université de Lorraine, INRAE, LSE, F-54000 Nancy, France.
Pesticides have a significant impact on the environment, harming valuable non-target organisms like bees. Honeybees, in particular, are ideal bioindicators of pesticide exposure due to extensive research on how pesticides affect their behavior, immunity, development, biomolecules, and detoxification. However, wild pollinators are less studied in terms of pesticide exposure, and their inclusion is essential for a comprehensive risk assessment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!