In 1964 Michael Bárány and colleagues published a paper ((M. Bárány, E. Gaetjens, K. Bárány, Karp E. Arch Biochem Biophys 106(1964)280-93. http://10.1016/0003-9861(64)90,189-4)) that has been one of the most cited papers in Archives of Biochemistry and Biophysics. This was followed in 1967 by another most cited paper (M. Bárány. J Gen Physiol 50(1967)197-218. https://doi.org/10.1085/jgp.50.6.197). I have commemorated these achievements as tipping points in the understanding of myosin motors in muscle function. Tipping points are generally defined as a temporal point in which a series of progressive advances (in this case the understanding of the relations between myosin ATP hydrolysis and muscle function) inspire more expansive, wide-ranging, significant changes. I first concisely summarize the background against which the papers came to publication as well as the unimaginable personal challenges faced by Michael and Kate Bárány. A final section summarizes the impact of these publications as key steps in the progression of contemporary understanding of diverse control of myosin ATPase activity with focus on the thick filaments in cardiac homeostasis, disorders, and as targets for therapeutic applications in translational investigations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2022.109319 | DOI Listing |
Environ Sci Technol
January 2025
College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. of China.
Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.
View Article and Find Full Text PDFNeurogastroenterol Motil
January 2025
Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
Investigations into mechanisms of cyclic(al) vomiting syndrome (CVS) began at the bedside more than a century ago. The modern era started with the formation of the Cyclic Vomiting Syndrome Association in 1993 that helped initiate robust efforts in education, advocacy, family physician conferences, scientific symposia, dedicated clinical programs, therapeutic guidelines, and research. Even today, bedside clues continue to emerge with the recent description of cannabinoid hyperemesis syndrome (CHS) and subsequent evidence of a perturbed endocannabinoid system.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK.
Hexaanionic cyclophosphazenate ligands [(RN)PN] provide versatile platforms for the assembly of multinuclear metal arrays due to their multiple coordination sites and highly flexible ligand core structure. This work investigates the impact of incrementally increasing the steric demand of the ligand periphery on the coordination behavior of ethylzinc arrays. It shows that the increased congestion around the ligand sites is alleviated by progressive condensation with the elimination of diethylzinc.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
January 2025
Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
Anthropogenic climate change is projected to become a major driver of biodiversity loss, destabilizing the ecosystems on which human society depends. As the planet rapidly warms, the disruption of ecological interactions among populations, species and their environment, will likely drive positive feedback loops, accelerating the pace and magnitude of biodiversity losses. We propose that, even without invoking such amplifying feedback, biodiversity loss should increase nonlinearly with warming because of the non-uniform distribution of biodiversity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!