Volatile organic compounds (VOCs) are a significant class of indoor air pollutants and are known for their adverse effects on health. A common strategy to reduce indoor VOC levels is to use sorbents, including activated carbons (ACs). The amount of activated carbon is critical to achieving a reasonable AC filter lifetime in an air purification device. The study aims to estimate the amount of carbon needed in a typical indoor environment and in a heavy use setting such as during cooking, agriculture field fires, or wildfires. The problem is complex as various types of ACs are used, and the type and concentration of VOCs in the indoor environment also vary in different settings. Therefore, literature data on thermophysical parameters for 45 AC-VOC pairs was used to estimate the required amount of AC under a given set of conditions. The study uses modeling distributions of the footprint of suitable carbon filters for the removal of common VOCs encountered indoors for a period of 30 days. It was found that while 50% of AC-VOC pairs surveyed will require about 190-370 g at low indoor VOCs levels of 0.1-1 μmol/m(considered a good clean indoor environment), up to 1.1 kg of ACs are needed for a carbon filter to survive 30 days in a typical indoor environment (VOCs levels of 10 μmol/m). On the other hand, 3-15 kg or more AC will be needed in a filter to survive 30 days during adverse events such as wildfires. The objective of the present study is to aid consumers and businesses in making an informed decision on the type of AC-based indoor air filters that meet their needs. Using this data, an open-access online calculator is being developed to predict the amount of carbon needed in a filter/device at any specific indoor air condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.135314 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Formaldehyde (HCHO) has become a significant indoor air pollutant, arising from the widespread use of decorative and construction materials. Adsorption is the most convenient method for HCHO removal. However, the current adsorption is limited by the current low adsorption capacity and desorption.
View Article and Find Full Text PDFBMC Public Health
January 2025
Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
Background: Coronavirus disease (COVID-19) quickly spread around the world after its initial identification in Wuhan, China in 2019 and became a global public health crisis. COVID-19 related hospitalizations and deaths as important disease outcomes have been investigated by many studies while less attention has been given to the relationship between these two outcomes at a public health unit level. In this study, we aim to establish the relationship of counts of deaths and hospitalizations caused by COVID-19 over time across 34 public health units in Ontario, Canada, taking demographic, geographic, socio-economic, and vaccination variables into account.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
School of Applied Mathematics and Informatics, University of Osijek, Trg Ljudevita Gaja 6, Osijek, Croatia.
The national radon surveys in Montenegro revealed that the highest annual average radon concentrations (C) in ground floors of dwellings and schools were found in a rural region characterized as a typical high-karst area. In this region, spanning approximately 800 km, C values in 9 houses and 16 schools ranged from 219 to 2494 Bq/m, with AM = 977 Bq/m. To investigate the causes of these elevated indoor radon concentrations, the following parameters were measured near the 25 surveyed buildings: soil humidity, electrical conductivity, pH, activity concentrations of Ra, U, U, Th and K, radon concentration in soil gas (c), soil permeability for radon gas (k), and gamma dose rate in the air.
View Article and Find Full Text PDFJ Therm Biol
January 2025
Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610000, China.
Maintaining an optimal indoor thermal environment is crucial for enhancing the welfare and productivity of livestock in intensive breeding farms. This paper investigated the application of a combined geothermal heat pump with a precision air supply (GHP-PAS) system for cooling dairy cows on a dairy farm. The effectiveness of the GHP-PAS system in mitigating heat stress in lactating dairy cattle, along with its energy performance and local cooling efficiency in the free stalls were evaluated.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02114.
Radon, a common radioactive indoor air pollutant, is the second leading cause of lung cancer in the United States. Knowledge about its distribution is essential for risk assessment and designing efficient protective regulations. However, the three current radon maps for the United States are unable to provide the up-to-date, high-resolution, and time-varying radon concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!