Silicon-enhanced tolerance to cadmium toxicity in soybean by enhancing antioxidant defense capacity and changing cadmium distribution and transport.

Ecotoxicol Environ Saf

The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, PR China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China. Electronic address:

Published: August 2022

AI Article Synopsis

  • Cadmium (Cd) is a toxic heavy metal that affects both plants and humans, and silicon (Si) has shown potential in reducing Cd's harmful effects in soybeans.
  • A controlled experiment revealed that Si promotes soybean growth, boosts antioxidant activity, and decreases Cd translocation within the plant, highlighting its beneficial role under Cd stress.
  • RNA-seq analysis identified 636 differentially expressed genes related to antioxidant systems and Cd transport, suggesting that these genes play a key role in enhancing plant response to Cd toxicity and may aid in developing Cd-tolerant soybean varieties.

Article Abstract

Cadmium (Cd) is a widely distributed heavy metal that is toxic to plants and humans. Although silicon (Si) has been reported to reduce Cd accumulation and toxicity in plants, evidence on the functions of Si and its mechanisms in the possible alleviation of soybean are limited. Therefore, a controlled experiment was conducted to investigate the impacts and mechanisms of Si on Cd retention in soybean. Here, we determined the growth index, Cd distribution, and antioxidant activity systems of Si, as well as expression levels of differentially expressed genes (DEGs) in Si under Cd stress, and conducted RNA-seq analysis. We not only found that Si can significantly promote soybean plant growth, increase plant antioxidant activities, and reduce the Cd translocation factor, but also revealed that a total of 636 DEGs were shared between CK and Cd, CK and Cd + Si, and Cd and Cd + Si. Moreover, several genes were significantly enriched in antioxidant systems and Cd distribution and transport systems. Therefore, the expression status of Si-mediated Cd stress response genes is likely involved in improving oxidative stress and changing Cd uptake and transport, as well as improving plant growth that contributes to Si alleviating Cd toxicity in plants. Moreover, numerous potential target genes were identified for the engineering of Cd-tolerant cultivars in soybean breeding programs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2022.113766DOI Listing

Publication Analysis

Top Keywords

distribution transport
8
toxicity plants
8
plant growth
8
soybean
5
silicon-enhanced tolerance
4
tolerance cadmium
4
cadmium toxicity
4
toxicity soybean
4
soybean enhancing
4
antioxidant
4

Similar Publications

The liverwort Arnellia fennica has a circumarctic distribution with disjunct and scarce localities in the Alps, Carpathians, and Pyrenees. Within the Carpathians, it is only known from the Tatra Mountains (in Poland), where so far only four occurrences have been documented in the forest belt of the limestone part of the Western Tatras. The species is considered a tertiary relict, which owes its survival during the last glaciation period to low-lying locations in areas not covered by ice.

View Article and Find Full Text PDF

Enewetak Atoll underwent 43 historical nuclear tests from 1948 to 1958, including the first hydrogen bomb test, resulting in a substantial nuclear material fallout contaminating the Atoll and the lagoon waters. The radionuclide fallout material deposited in lagoon sediments and soil on the islands will remain for decades to come. With intensifying climate and extreme weather events, the possibility of redistribution of deposited radionuclide material has become a great concern.

View Article and Find Full Text PDF

Large-scale rock burst disasters often occur in high-stress and deep-buried tunnels, due to challenges in accurate forecasting and the lack of clarity regarding the underlying mechanisms largely. This study combined on-site stress drilling tests, coupled finite and discrete element simulations, and theoretical calculations to examine unloading damage, rockburst evolution, and deformation failure of the high-stress and deep-buried Xuefengshan No.1 tunnel.

View Article and Find Full Text PDF

An ML-Enhanced Laser-Based Methane Slip Sensor Using Wavelength Modulation Spectroscopy.

ACS Sens

January 2025

Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia V6T 1Z4, Canada.

Natural gas (NG) is a promising alternative to diesel for sustainable transport, potentially reducing GHG and air quality emissions significantly. However, the GHG benefits hinge on managing methane slip, the unburned methane in the exhaust of NG engines, which carries a significant global warming potential. The CH slip from NG engines is highly dependent on engine type and operation, and effective greenhouse gas emission mitigation requires that the actual operation of real-world engines is monitored.

View Article and Find Full Text PDF

Inverse dose protraction effects of low-LET radiation: evidence and significance.

Mutat Res Rev Mutat Res

January 2025

Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.

Biological effects of ionizing radiation vary not merely with total dose but also with temporal dose distribution. Sparing dose protraction effects, in which dose protraction reduces effects of radiation have widely been accepted and generally assumed in radiation protection, particularly for stochastic effects (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!