A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

On the origin of nitrosylated hemoglobin in COVID-19: Endothelial NO capture or redox conversion of nitrite?: Experimental results and a cautionary note on challenges in translational research. | LitMetric

In blood, the majority of endothelial nitric oxide (NO) is scavenged by oxyhemoglobin, forming nitrate while a small part reacts with dissolved oxygen to nitrite; another fraction may bind to deoxyhemoglobin to generate nitrosylhemoglobin (HbNO) and/or react with a free cysteine to form a nitrosothiol. Circulating nitrite concentrations in healthy individuals are 200-700 nM, and can be even lower in patients with endothelial dysfunction. Those levels are similar to HbNO concentrations ([HbNO]) recently reported, whereby EPR-derived erythrocytic [HbNO] was lower in COVID-19 patients compared to uninfected subjects with similar cardiovascular risk load. We caution the values reported may not reflect true (patho)physiological concentrations but rather originate from complex chemical interactions of endogenous nitrite with hemoglobin and ascorbate/N-acetylcysteine. Using an orthogonal detection method, we find baseline [HbNO] to be in the single-digit nanomolar range; moreover, we find that these antioxidants, added to blood collection tubes to prevent degradation, artificially generate HbNO. Since circulating nitrite also varies with lifestyle, dietary habit and oral bacterial flora, [HbNO] may not reflect endothelial activity alone. Thus, its use as early marker of NO-dependent endothelial dysfunction to stratify COVID-19 patient risk may be premature. Moreover, oxidative stress not only impairs NO formation/bioavailability, but also shifts the chemical landscape into which NO is released, affecting its downstream metabolism. This compromises the endothelium's role as gatekeeper of tissue nutrient supply and modulator of blood cell function, challenging the body's ability to maintain redox balance. Further studies are warranted to clarify whether the nature of vascular dysfunction in COVID-19 is solely of endothelial nature or also includes altered erythrocyte function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181201PMC
http://dx.doi.org/10.1016/j.redox.2022.102362DOI Listing

Publication Analysis

Top Keywords

circulating nitrite
8
endothelial dysfunction
8
endothelial
6
origin nitrosylated
4
nitrosylated hemoglobin
4
covid-19
4
hemoglobin covid-19
4
covid-19 endothelial
4
endothelial capture
4
capture redox
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!