Within hematology and oncology, companion diagnostics (CDxs) play an increasing role in securing an optimal therapy for individual patients, and the US Food and Drug Administration (FDA) consider this type of assay essential for the safe and effective use of a corresponding therapeutic product. Most CDxs are developed prospectively using the drug-diagnostic codevelopment model, which normally secures the simultaneous approval of both drugs and diagnostics. A CDx assay is an important treatment decision tool that needs to be available simultaneously with the drug. However, within the past few years, several targeted drugs and new indications have been approved by the FDA without a CDx, despite the use of a predictive biomarker assay for patient selection during clinical development. A missing analytical and clinically validated CDx assay could affect the correct use of these drugs and ultimately patient safety. An alternative to FDA-approved or FDA-cleared CDxs could be to use a laboratory-developed test, which will normally miss documentation on the clinical validity. On the basis of the information available from different publicly available FDA databases, this article briefly discusses the issue of missing CDx assays in relation to the approval of hematological and oncological drugs and new indications.

Download full-text PDF

Source
http://dx.doi.org/10.1200/PO.22.00100DOI Listing

Publication Analysis

Top Keywords

food drug
8
hematological oncological
8
oncological drugs
8
cdx assay
8
drugs indications
8
drugs
5
missing companion
4
companion diagnostic
4
diagnostic food
4
drug administration-approved
4

Similar Publications

The biopharmaceutical industry has witnessed significant growth in the development and approval of biosimilars. These biosimilars aim to provide cost-effective alternatives to expensive originator biosimilars, alleviating financial pressures within healthcare. The manufacturing of biosimilars is a highly complex process that involves several stages, each of which must meet strict regulatory standards to ensure that the final product is highly similar to the reference biologic.

View Article and Find Full Text PDF

The magnetization strategy of isoquinoline alkaloids has been successfully used in the extraction and isolation, but the effect of the magnetization on biological activities of those alkaloids still deserves further investigation. Therefore, the antibacterial, lipid-lowering and antioxidant activities of five isoquinoline alkaloids (berberine, tetrahydroberberine, palmatine, tetrahydropalmatine and tetrahydropapavine) before and after magnetization were compared in this study, and the results showed that the relevant activities were enhanced after magnetization. Additionally, among the five magnetic derivatives studied, berberine magnetic derivative ([Ber·H][FeCl]) had the best antibacterial effect on S.

View Article and Find Full Text PDF

Effect of anthocyanin rich black sugarcane on milk production and antioxidant capacity in lactating dairy cows.

Sci Rep

January 2025

School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.

This study aimed to explore the effect of anthocyanin-rich black sugarcane on milk production, plasma antioxidant capacity, and the storage period DPPH scavenging capacity of milk in lactating dairy cows. Sixteen lactating dairy cows were stratified and randomly assigned into two balanced dietary groups, namely Anthocyanin-rich black sugarcane (AS), and Napier grass (NG). The AS group demonstrated a significant decrease (p < 0.

View Article and Find Full Text PDF

Acute rhinosinusitis (ARS) in children may be accompanied by acute otitis media (AOM) which is often associated with bacterial co-infections. These conditions are among the primary reasons that children visit hospitals and require antibiotic treatment. This study evaluated the efficacy of the nasal-spraying probiotics (LiveSpo Navax containing 5 billion Bacillus subtilis and B.

View Article and Find Full Text PDF

The PI4K2A gene positively regulates lipid synthesis in bovine mammary epithelial cells and attenuates the inhibitory effect of t10,c12-CLA on lipid synthesis.

Sci Rep

January 2025

College of Animal Science and Technology, Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Yinchuan, 750021, China.

Currently, the identification of valuable candidate genes affecting milk fat synthesis in dairy cows is still limited, and the specific regulatory mechanism is still unknown. In this study, we used primary bovine mammary epithelial cells(BMECs)as a model and utilized overexpression and knockdown techniques for the PI4K2A gene to investigate the specific mechanisms by which it regulates lipid metabolism in BMECs. We studied whether PI4K2A regulates the inhibition of trans-10, cis-12 conjugated linoleic acid (t10,c12-CLA) on lipid synthesis in BMECs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!