Thermal runaway (TR) failures of large-format lithium-ion battery systems related to fires and explosions have become a growing concern. Here, we design a smart ceramic-hydrogel nanocomposite that provides integrated thermal management, cooling, and fire insulation functionalities and enables full-lifecycle security. The glass-ceramic nanobelt sponges exhibit high mechanical flexibility with 80% reversible compressibility and high fatigue resistance, which can firmly couple with the polymer-nanoparticle hydrogels and form thermal-switchable nanocomposites. In the operating mode, the high enthalpy of the nanocomposites enables efficient thermal management, thereby preventing local temperature spikes and overheating under extremely fast charging conditions. In the case of mechanical or thermal abuse, the stored water can be immediately released, leaving behind a highly flexible ceramic matrix with low thermal conductivity (42 mW m K at 200 °C) and high-temperature resistance (up to 1300 °C), thus effectively cooling the TR battery and alleviating the devastating TR propagation. The versatility, self-adaptivity, environmental friendliness, and manufacturing scalability make this material highly attractive for practical safety assurance applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c02557DOI Listing

Publication Analysis

Top Keywords

full-lifecycle security
8
battery systems
8
thermal management
8
thermal
5
thermal-switchable trifunctional
4
trifunctional ceramic-hydrogel
4
ceramic-hydrogel nanocomposites
4
nanocomposites enable
4
enable full-lifecycle
4
security practical
4

Similar Publications

Consumed globally, oilseeds serve as a major source of proteins and oils in human and animal nutrition, supporting global food security. Zinc (Zn) is an essential micronutrient critical for oil and protein synthesis in plants. In this study, we synthesized three distinct sized zinc oxide nanoparticles (nZnO: 38 nm = S [small], 59 nm = M [medium], and > 500 nm = L [large], and assessed the potential effects of varied particle sizes and concentrations (0, 50, 100, 200, and 500 mg/kg-soil) on seed yield attributes, nutrient quality and oil and protein yield in soybean (Glycine max L.

View Article and Find Full Text PDF

Thermal-Switchable, Trifunctional Ceramic-Hydrogel Nanocomposites Enable Full-Lifecycle Security in Practical Battery Systems.

ACS Nano

July 2022

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

Thermal runaway (TR) failures of large-format lithium-ion battery systems related to fires and explosions have become a growing concern. Here, we design a smart ceramic-hydrogel nanocomposite that provides integrated thermal management, cooling, and fire insulation functionalities and enables full-lifecycle security. The glass-ceramic nanobelt sponges exhibit high mechanical flexibility with 80% reversible compressibility and high fatigue resistance, which can firmly couple with the polymer-nanoparticle hydrogels and form thermal-switchable nanocomposites.

View Article and Find Full Text PDF

The infection rate of COVID-19 and the rapid mutation ability of the virus has forced governments and health authorities to adopt lockdowns, increased testing, and contact tracing to reduce the virus's spread. Digital contact tracing has become a supplement to the traditional manual contact tracing process. However, although several digital contact tracing apps are proposed and deployed, these have not been widely adopted due to apprehensions surrounding privacy and security.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!