Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pregnancy induces maternal renal adaptations that include increased glomerular filtration rate and renal blood flow which can be compromised in obstetrical complications such as preeclampsia. Brown Norway (BN) rat pregnancies are characterized by placental insufficiency, maternal hypertension, and proteinuria. We hypothesized that BN pregnancies would show renal functional, anatomical, or molecular features of preeclampsia. We used the Sprague-Dawley (CD) rat as a model of normal pregnancy. Pregnancy increased the glomerular filtration rate by 50% in CD rats and 12.2% in BN rats compared to non-pregnancy, and induced proteinuria only in BN rats. BN pregnancies showed a decrease in maternal plasma calcitriol levels, which correlated with renal downregulation of 1-alpha hydroxylase and upregulation of 24-hydroxylase. RNA sequencing revealed that pregnancy induced 297 differentially expressed genes (DEGs) in CD rats and 174 DEGs in BN rats, indicating a 70% increased response to pregnancy in CD compared to BN rats. Pregnancy induced activation of innate immune pathways such as 'Role of Pattern Recognition Receptors', and 'Interferon signaling' with interferon regulatory factor 7 as a common upregulated upstream factor in both rat strains. Comparison of rat strain transcriptomic profiles revealed 475 DEGs at non-pregnancy and 569 DEGs at pregnancy with 205 DEGs shared at non-pregnancy (36%), indicating that pregnancy interacted with rat strain in regulating 64% of the DEGs. Pathway analysis revealed that pregnancy induced a switch in renal transcriptomics in BN rats from 'inhibition of renal damage' to 'acute phase reaction', 'recruitment of immune cells' and 'inhibition of 1,25-(OH)2-vitamin D synthesis'. Key upstream regulators included peroxisome-proliferator-activated receptor alpha (PPARA), platelet-derived growth factor B dimer (PDGF-BB), and NF-kB p65 (RELA). DNA methylome profiling by reduced representation bisulfite sequencing studies revealed that the DEGs did not correlate with changes in promoter methylation. In sum, BN rat kidneys respond to pregnancy-specific signals with an increase in pro-inflammatory gene networks and alteration of metabolic pathways including vitamin D deficiency in association with mild proteinuria and blunted GFR increase. However, the lack of glomerular endotheliosis and mild hypertension/proteinuria in pregnant BN rats limits the relevance of this rat strain for preeclampsia research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202892 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269792 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!