Biocatalysts are widely used in industry, but few examples of the use of oxidoreductases, in which enzymatic function often requires electrons, have been reported. NADPH is a cofactor that supplies an electron to oxidoreductases, but is consequently inactivated and no longer able to act as an electron donor. NADP+ can not receive electrons from electrodes through straightforward electrochemistry owing to its complicated three-dimensional structure. This study reports that bipyridines effectively mediate electron transfer between an electrode and NADP+, allowing them to serve as electron mediators for NADPH production. Using bipyridines, quinones, and anilines, which have negative oxidation-reduction potentials, an electrochemical investigation was conducted into whether electrons were transferred to NADP+. Only bipyridines with a reduction potential near -1.0 V exhibited electron transfer. Furthermore, the NADPH production level was measured using spectroscopy. NADPH was efficiently produced using bipyridines, such as methyl viologen and ethyl viologen, in which the bipyridyl 1- and 1'-positions bear small substituents. However, methyl viologen caused a dehydrogenation reaction of NADPH, making it unsuitable as an electron mediator for NADPH production. The dehydrogenation reaction did not occur using ethyl viologen. These results indicated that NADP+ can be reduced more effectively using substituents that prevent a dehydrogenation reaction at the bipyridyl 1- and 1'-positions while maintaining the reducing power.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202866 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269693 | PLOS |
J Am Chem Soc
January 2025
Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
Epoxides are versatile chemical intermediates that are used in the manufacture of diversified industrial products. For decades, thermochemical conversion has long been employed as the primary synthetic route. However, it has several drawbacks, such as harsh and explosive operating conditions, as well as a significant greenhouse gas emissions problem.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
Rib fracture-related infection is a challenging complication of thoracic trauma due to the difficulty of treating it with antibiotics alone and the need for a second operation to remove the infected fixator and sterilize the surrounding infected tissue. In this study, inspired by the photocatalytic performance of and ion release from silver-based materials, including AgPO and AgS, a hybrid AgPO-AgS heterojunction was prepared based on anion exchange and a one-step calcination process to design a nonantibiotic coating aimed at preventing and treating rib fracture-related infection with short-term 808 nm near-infrared irradiation. Calcination at 250 °C enhanced the inductive effect of the phosphate radical and led to the formation of a tight nanoheterogeneous interface between AgPO and AgS, thereby promoting interfacial electron transfer and reducing the recombination of photogenerated carriers.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States.
The daily light-dark cycle is a recurrent and predictable environmental phenomenon to which many organisms, including cyanobacteria, have evolved to adapt. Understanding how cyanobacteria alter their metabolic attributes in response to subjective light or dark growth may provide key features for developing strains with improved photosynthetic efficiency and applications in enhanced carbon sequestration and renewable energy. Here, we undertook a label-free proteomic approach to investigate the effect of extended light (LL) or extended dark (DD) conditions on the unicellular cyanobacterium ATCC 51142.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Chalmers University of Technology, Department of Physics, 412 96 Göteborg, Sweden.
The phonon inverse Faraday effect describes the emergence of a dc magnetization due to circularly polarized phonons. In this work we present a microscopic formalism for the phonon inverse Faraday effect. The formalism is based on time-dependent second order perturbation theory and electron phonon coupling.
View Article and Find Full Text PDFLangmuir
January 2025
Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran.
In this study, a Pd nanoparticles@hydrogen-bonded organic framework (Pd NPs@HOF) thin film was fabricated at the toluene-water interface. The HOF was formed through the interaction of trimesic acid (TMA) and melamine (Mel) in the water phase, while Pd(0) was produced from the reduction of [PdCl(cod)] in the organic phase. The as-synthesized Pd NPs@HOF thin film was demonstrated to be an effective catalyst for the selective reduction of -nitrophenol and -nitrophenol to -aminophenol and -aminophenol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!