Tissue engineering commonly entails combining autologous cell sources with biocompatible scaffolds for the replacement of damaged tissues in the body. Scaffolds provide functional support while also providing an ideal environment for the growth of new tissues until host integration is complete. To expedite tissue development, cells need to be distributed evenly within the scaffold. For scaffolds with a small diameter tubular geometry, like those used for vascular tissue engineering, seeding cells evenly along the luminal surface can be especially challenging. Perfusion-based cell seeding methods have been shown to promote increased uniformity in initial cell distribution onto porous scaffolds for a variety of tissue engineering applications. We investigate the seeding efficiency of a custom-designed perfusion-based seed-and-culture bioreactor through comparisons to a static injection counterpart method and a more traditional drip seeding method. Murine vascular smooth muscle cells were seeded onto porous tubular electrospun polycaprolactone scaffolds, 2 mm in diameter and 30 mm in length, using the three methods, and allowed to rest for 24 hours. Once harvested, scaffolds were evaluated longitudinally and circumferentially to assess the presence of viable cells using alamarBlue and live/dead cell assays and their distribution with immunohistochemistry and scanning electron microscopy. On average, bioreactor-mediated perfusion seeding achieved 35% more luminal surface coverage when compared to static methods. Viability assessment demonstrated that the total number of viable cells achieved across methods was comparable with slight advantage to the bioreactor-mediated perfusion-seeding method. The method described is a simple, low-cost method to consistently obtain even distribution of seeded cells onto the luminal surfaces of small diameter tubular scaffolds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202848PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269499PLOS

Publication Analysis

Top Keywords

small diameter
12
tissue engineering
12
cell seeding
8
seed-and-culture bioreactor
8
diameter tubular
8
luminal surface
8
viable cells
8
scaffolds
7
seeding
6
cells
6

Similar Publications

Design and Study of Pulsed Eddy Current Sensor for Detecting Surface Defects in Small-Diameter Bars.

Sensors (Basel)

December 2024

College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

The design and study of pulsed eddy current sensors for detecting surface defects in small-diameter rods are highly significant. Accurate detection and identification of surface defects in small-diameter rods may be attained by the ongoing optimization of sensor design and enhancement of detection technologies. This article presents the construction of a non-coaxial differential eddy current sensor (Tx-Rx sensor) and examines the detection of surface defects in a small diameter bar.

View Article and Find Full Text PDF

Mesoporous Polydopamine Nano-Bowls Demonstrate a High Entrapment Efficiency and pH-Responsive Release of Paclitaxel for Suppressing A549 Lung Cancer Cell Proliferation In Vitro.

Pharmaceutics

December 2024

Wits Advanced Drug Delivery Platform, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.

The effectiveness of paclitaxel (PTX) in treating non-small-cell lung carcinoma (NSCLC) is restricted by its poor pharmacokinetic profile and side effects. This limitation stems from the lack of a suitable delivery vector to efficiently target cancer cells. Therefore, there is a critical need to develop an efficient carrier for the optimised delivery of PTX in NSCLC therapy.

View Article and Find Full Text PDF

Small Gap Dynamics in High Mountain Central European Spruce Forests-The Role of Standing Dead Trees in Gap Formation.

Plants (Basel)

December 2024

Department of Forest Resource Planning and Informatics, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 960 01 Zvolen, Slovak Republic.

Gap dynamics are driving many important processes in the development of temperate forest ecosystems. What remains largely unknown is how often the regeneration processes initialized by endogenous mortality of dominant and co-dominant canopy trees take place. We conducted a study in the high mountain forests of the Central Western Carpathians, naturally dominated by the Norway spruce.

View Article and Find Full Text PDF

Effects of Different Processing on miRNA and Protein in Small Extracellular Vesicles of Goat Dairy Products.

Nutrients

December 2024

Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China.

Objectives: Small extracellular vesicles (sEVs) are nanosized vesicles with biological activities that exist in milk, playing functional roles in immunity, gut balance, and the nervous system. Currently, little is known about the impact of processing on milk sEVs.

Methods: In this study, sEVs were collected from raw goat milk (g-sEV), pasteurized goat milk (pg-sEV), and goat milk powder (-sEV) using a sucrose cushion centrifugation combined with qEV chromatography.

View Article and Find Full Text PDF

Recent Advancements in Imaging Techniques for Individual Extracellular Vesicles.

Molecules

December 2024

The United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan.

Extracellular vesicles (EVs), secreted from most cells, are small lipid membranes of vesicles of 30 to 1000 nm in diameter and contain nucleic acids, proteins, and intracellular organelles originating from donor cells. EVs play pivotal roles in intercellular communication, particularly in forming niches for cancer cell metastasis. However, EVs derived from donor cells exhibit significant heterogeneity, complicating the investigation of EV subtypes using ensemble averaging methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!