Background: The viral kinetics of SARS-CoV-2 has been considered clinically important. While remdesivir and corticosteroids are recommended for COVID-19 patients requiring oxygen support, there is a limited number of published reports on viral kinetics in hospitalised patients with COVID-19 treated with remdesivir or corticosteroids.
Methods: We conducted a retrospective study by collecting longitudinal samples from the nasopharynx/throat of 123 hospitalised patients (median age 55 years, 74% male) with COVID-19, to evaluate the effects of remdesivir and corticosteroid treatment on viral RNA levels. The subjects were divided into four groups: those receiving remdesivir ( = 25), betamethasone ( = 41), both ( = 15), or neither ( = 42). Time to viral RNA clearance was analysed using Kaplan-Meier plots, categorical data were analysed using Fisher's exact test, and Kruskal-Wallis for continuous data. Viral RNA decline rate was analysed using a mixed effect model.
Results: We found no significant difference in SARS-CoV-2 RNA decline rate or time to SARS-CoV-2 RNA clearance between the groups. Moreover, clinical status at baseline was not correlated with time to viral clearance.
Conclusions: Since SARS-CoV-2 RNA kinetics was not affected by treatment, repeated sampling from the upper respiratory tract cannot be used to evaluate treatment response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/23744235.2022.2081716 | DOI Listing |
Molecules
December 2024
Institute of Organic and Analytical Chemistry (ICOA UMR 7311), CNRS, University of Orleans, F-45067 Orléans, France.
The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of -substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Biology, Appalachian State University, Boone, North Carolina, USA.
Unlabelled: Testing for the causative agent of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been crucial in tracking disease spread and informing public health decisions. Wastewater-based epidemiology has helped to alleviate some of the strain of testing through broader, population-level surveillance, and has been applied widely on college campuses. However, questions remain about the impact of various sampling methods, target types, environmental factors, and infrastructure variables on SARS-CoV-2 detection.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, 266237, China. Electronic address:
Background: The COVID-19 pandemic has significantly affected global health, economies, and societies, and highlighted the urgent need for rapid, sensitive, affordable, and portable diagnostic devices for respiratory diseases, especially in areas with limited resources. In recent years, there has been rapid development in integrated equipments using microfluidic chips and biochemical detection technologies. However, these devices are expensive and complex to operate, showing limited feasibility for in point of care tests (PoCTs).
View Article and Find Full Text PDFSTAR Protoc
January 2025
Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Intracellular microorganisms like viruses and bacteria impact immune cell function. However, detection of these microbes is challenging as the majority exist in a non-culturable state. This protocol presents detailed steps to investigate intracellular microbial diversity using single-cell RNA sequencing (scRNA-seq) in immune-cells of SARS-CoV-2-positive and recovered patients.
View Article and Find Full Text PDFClin Exp Immunol
January 2025
Translational Biomedical Sciences Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
Introduction: The ability of SARS-CoV-2 to evade antiviral immune signaling in the airway contributes to the severity of COVID-19 disease. Additionally, COVID-19 is influenced by age and has more severe presentations in older individuals. This raises questions about innate immune signaling as a function of lung development and age.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!