We report an acid-catalyzed formal cycloaddition and dehydrative substitution reaction of tertiary propargylic alcohols and heteroareneboronic acids. The properties of the substituents on the alkynyl moiety determines the regioselectivity of the reaction, which could selectively construct fused heterocycles, tetrasubstituted allenes, or 1,3-dienes. This reaction proceeds efficiently with a wide array of substrate scope in up to 89% yield. A significant advantage of this protocol is the transition-metal-free and mild conditions needed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.2c01403 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, United States.
The bulk phase of transition metal nitrides (TMNs) has long been a subject of extensive investigation due to their utility as coating materials, electrocatalysts, and diffusion barriers, attributed to their high conductivity and refractory properties. Downscaling TMNs into two-dimensional (2D) forms would provide valuable members to the existing 2D materials repertoire, with potential enhancements across various applications. Moreover, calculations have anticipated the emergence of uncommon physical phenomena in TMNs at the 2D limit.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Organic Chemistry, University of Debrecen Egyetem Square 1 Debrecen 4032 Hungary
Domino Knoevenagel-cyclization reactions of styrene substrates, containing an -(-formyl)aryl subunit, were carried out with -substituted 2-cyanoacetamides to prepare tetrahydro-4-pyrano[3,4-]quinolone and hexahydrobenzo[]phenanthridine derivatives by competing IMHDA and IMSDA cyclization, respectively. The diastereoselective IMHDA step with α,β-unsaturated amide, thioamide, ester and ketone subunits as a heterodiene produced condensed chiral tetrahydropyran or thiopyran derivatives, which in the case of Meldrum's acid were reacted further with amine nucleophiles in a multistep domino sequence. In order to simplify the benzene-condensed tricyclic core of the targets and get access to hexahydro-1-pyrano[3,4-]pyridine derivatives, a truncated substrate was reacted with cyclic and acyclic active methylene reagents in diastereoselective Knoevenagel-IMHDA reactions to prepare novel condensed heterocyclic scaffolds.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, University of Kurdistan P. O. Box 66135-416 Sanandaj Iran +98 873324133 +98 8733624133.
Synthesis of 5-substituted 1-tetrazoles and reduction of a variety of nitro compounds presents a promising solution for the pharmaceutical and agricultural industries. However, the development of green catalysts with superior catalytic performance for this reaction remains a significant challenge. This research introduces a green protocol for the creation of ultrafine Cu(ii) metal immobilized on the surface of pectin hydrogel (HPEC), modified by a CoFeO/Pr-SOH magnetic nanocomposite, enabling the synthesis of tetrazoles and reduction of nitro compounds.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA.
Photosynthetic reaction center proteins (RCs) provide ideal model systems for studying quantum entanglement between multiple spins, a quantum mechanical phenomenon wherein the properties of the entangled particles become inherently correlated. Following light-generated sequential electron transfer, RCs generate spin-correlated radical pairs (SCRPs), also referred to as entangled spin qubit (radical) pairs (SQPs). Understanding and controlling coherence mechanisms in SCRP/SQPs is important for realizing practical uses of electron spin qubits in quantum sensing applications.
View Article and Find Full Text PDFOrg Lett
January 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
Herein, we introduce a scandium-catalyzed synthetic strategy that provides access to a diverse and functionalized array of cyclobutene frameworks adorned with a quaternary carbon center. This approach broadens the synthetic repertoire of 2-alkynylnaphthols with alkenes, offering a versatile platform for the construction of complex molecular architectures. The asymmetric catalytic [2 + 2] cycloaddition reaction demonstrates a wide substrate scope and an impressive functional group tolerance, yielding products with high efficiency, up to 97% yield, and excellent enantiomeric excess of up to 97%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!