Quorum sensing (QS) in bacteria has been well studied as a cellular communication phenomenon for decades. In recent years, such systems have been repurposed for the use of biosensors in both cellular and cell-free contexts as well as for inducible protein expression in nontraditional chassis organisms. Such biosensors are particularly intriguing when considering the association between the pathogenesis of some bacteria and their signaling intermediates. Considering this relationship and considering the recent demonstration of the species WCFS1 as both a synthetic biology chassis and an organism capable of detecting a pathogen-associated QS molecule, we wanted to develop this organism as a QS sentinel. We used an approach combining techniques from both systems and synthetic biology to identify a number of native QS-response genes and to alter associated promoter activity to tune the output of cultures exposed to -3-oxododecanoyl homoserine lactone. The resulting engineered QS sentinel reinforces the potential of modified lactic acid bacteria (LAB) for use in human-health-promoting applications and also demonstrates a simple rational workflow to engineer sentinel organisms to respond to any environmental or chemical stimuli.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.1c01191DOI Listing

Publication Analysis

Top Keywords

pathogen-associated molecule
8
-3-oxododecanoyl homoserine
8
homoserine lactone
8
synthetic biology
8
promoter identification
4
identification optimization
4
optimization response
4
response wcfs1
4
wcfs1 gram-negative
4
gram-negative pathogen-associated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!