Organometallic Synthesis of Magnetic Metal Nanoparticles.

Angew Chem Int Ed Engl

Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, 31077, Toulouse, France.

Published: August 2022

Magnetic nanoparticles (NPs) are attractive both for their fundamental properties and for their potential in a variety of applications ranging from nanomedicine and biology to micro/nanoelectronics and catalysis. While these fields are dominated by the use of iron oxides, reduced metal NPs are of interest since they display high magnetization and adjustable anisotropy according to their size, shape and composition. The use of organometallic precursors makes it possible to adjust the size, shape (sphere, cube, rod, wire, urchin, …) and composition (alloys, core-shell, composition gradient, dumbbell, …) of the resulting NPs and hence their magnetic properties. We discuss here the synthesis of magnetic metal NPs from organometallic precursors carried out in Toulouse, as well as their associated properties and their potential in applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202207301DOI Listing

Publication Analysis

Top Keywords

synthesis magnetic
8
magnetic metal
8
properties potential
8
metal nps
8
size shape
8
organometallic precursors
8
organometallic synthesis
4
magnetic
4
metal nanoparticles
4
nanoparticles magnetic
4

Similar Publications

Background: Intracerebral hemorrhage (ICH) causes prominent deposition of extracellular matrix molecules, particularly the chondroitin sulphate proteoglycan (CSPG) member neurocan. In tissue culture, neurocan impedes the properties of oligodendrocytes. Whether therapeutic reduction of neurocan promotes oligodendrogenesis and functional recovery in ICH is unknown.

View Article and Find Full Text PDF

The ability to control the growth and orientation of neurites over long distances has significant implications for regenerative therapies and the development of physiologically relevant brain tissue models. In this study, the forces generated on magnetic nanoparticles internalised within intracellular endosomes are used to direct the orientation of neuronal outgrowth in cell cultures. Following differentiation, neurite orientation was observed after 3 days application of magnetic forces to human neuroblastoma (SH-SY5Y) cells, and after 4 days application to rat cortical primary neurons.

View Article and Find Full Text PDF

Eco-friendly synthesis of CuO/g-C₃N₄/Fe₃O₄ nanocomposites for efficient magnetic micro-solid phase extraction (M-μ-SPE) of trace cadmium from food and water samples.

Food Chem

December 2024

Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkiye; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkiye; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkiye; Khazar University Nano BioAnalytical Chemistry Center (NBAC), Mahsati Str 41, AZ-1096 Baku, Azerbaijan.

In this study, a green synthesis method for synthesizing a novel nanocomposite (CuO/g-C₃N₄/Fe₃O₄) utilizing renewable dragon fruit peels as the primary raw material was developed. Hydrothermal and thermal decomposition techniques were used for nanocomposite synthesis. This nanocomposite was subsequently employed for the separation and preconcentration of Cd(II) from various environments, including food and water samples.

View Article and Find Full Text PDF

Challenges of Investigating Compartmentalized Brain Energy Metabolism Using Nuclear Magnetic Resonance Spectroscopy in vivo.

Neurochem Res

January 2025

Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.

Brain function requires continuous energy supply. Thus, unraveling brain metabolic regulation is critical not only for our basic understanding of overall brain function, but also for the cellular basis of functional neuroimaging techniques. While it is known that brain energy metabolism is exquisitely compartmentalized between astrocytes and neurons, the metabolic and neuro-energetic basis of brain activity is far from fully understood.

View Article and Find Full Text PDF

Secupyritines A‒C are unique polycyclic Securinega alkaloids isolated from medicinal plant Flueggea suffruticosa. They feature a distinctive 6/6/6/5/6 fused pentacyclic ring system with a highly strained 2-oxa-6-aza[4.4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!