A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cause-specific hazard regression estimation for modified Weibull distribution under a class of non-informative priors. | LitMetric

In time to event analysis, the situation of competing risks arises when the individual (or subject) may experience mutually exclusive causes of death (failure), where cause-specific hazard function is of great importance in this framework. For instance, in malignancy-related death, colorectal cancer is one of the leading causes of the death in the world and death due to other causes considered as competing causes. We include prognostic variables in the model through parametric Cox proportional hazards model. Mostly, in literature exponential, Weibull, etc. distributions have been used for parametric modelling of cause-specific hazard function but they are incapable to accommodate non-monotone failure rate. Therefore, in this article, we consider a modified Weibull distribution which is capable to model survival data with non-monotonic behaviour of hazard rate. For estimating the cumulative cause-specific hazard function, we utilized maximum likelihood and Bayesian methods. A class of non-informative types of prior (uniform, Jeffrey's and half-) is introduced for Bayes estimation under squared error (symmetric) as well as LINEX (asymmetric) loss functions. A simulation study is performed for a comprehensive comparison of Bayes and maximum likelihood estimators of cumulative cause-specific hazard function. Real data on colorectal cancer is used to demonstrate the proposed model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041849PMC
http://dx.doi.org/10.1080/02664763.2021.1882407DOI Listing

Publication Analysis

Top Keywords

cause-specific hazard
20
hazard function
16
modified weibull
8
weibull distribution
8
class non-informative
8
colorectal cancer
8
cumulative cause-specific
8
maximum likelihood
8
cause-specific
5
hazard
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!