Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, two new general families of distributions supported on the unit interval are introduced. The proposed families include several known models as special cases and define at least twenty (each one) new special models. Since the list of well-being indicators may include several double bounded random variables, the applicability for modeling those is the major practical motivation for introducing the distributions on those families. We propose a parametrization of the new families in terms of the median and develop a shiny application to provide interactive density shape illustrations for some special cases. Various properties of the introduced families are studied. Some special models in the new families are discussed. In particular, the complementary unit Weibull distribution is studied in some detail. The method of maximum likelihood for estimating the model parameters is discussed. An extensive Monte Carlo experiment is conducted to evaluate the performances of these estimators in finite samples. Applications to the literacy rate in Brazilian and Colombian municipalities illustrate the usefulness of the two new families for modeling well-being indicators.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041710 | PMC |
http://dx.doi.org/10.1080/02664763.2020.1796936 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!