Deep learning is a branch of machine learning that uses neural networks to mimic the behaviour of the human brain. Various types of models are used in deep learning technology. This article will look at two important models and especially concentrate on unsupervised learning methodology. The two important models are as follows: the supervised and unsupervised models. The main difference is the method of training that they undergo. Supervised models are provided with training on a particular dataset and its outcome. In the case of unsupervised models, only input data is given, and there is no set outcome from which they can learn. The predicting/forecasting column is not present in an unsupervised model, unlike in the supervised model. Supervised models use regression to predict continuous quantities and classification to predict discrete class labels; unsupervised models use clustering to group similar models and association learning to find associations between items. Unsupervised migration is a combination of the unsupervised learning method and migration. In unsupervised learning, there is no need to supervise the models. Migration is an effective tool in processing and imaging data. Unsupervised learning allows the model to work independently to discover patterns and information that were previously undetected. It mainly works on unlabeled data. Unsupervised learning can achieve more complex processing tasks when compared to supervised learning. The unsupervised learning method is more unpredictable when compared with other types of learning methods. Some of the popular unsupervised learning algorithms include k-means clustering, hierarchal clustering, Apriori algorithm, clustering, anomaly detection, association mining, neural networks, etc. In this research article, we implement this particular deep learning model in the marketing oriented asset allocation of high level accounting talents. When the proposed unsupervised migration algorithm was compared to the existing Fractional Hausdorff Grey Model, it was discovered that the proposed system provided 99.12% accuracy by the high level accounting talented candidate in market-oriented asset allocation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9192229PMC
http://dx.doi.org/10.1155/2022/5653942DOI Listing

Publication Analysis

Top Keywords

unsupervised learning
28
deep learning
16
learning
15
unsupervised
13
unsupervised migration
12
high level
12
level accounting
12
unsupervised models
12
models
10
learning model
8

Similar Publications

A significant advancement in synthetic biology is the development of synthetic gene circuits with predictive Boolean logic. However, there is no universally accepted or applied statistical test to analyze the performance of these circuits. Many basic statistical tests fail to capture the predicted logic (OR, AND, etc.

View Article and Find Full Text PDF

Background: Cardiogenic shock (CS) is a heterogeneous clinical syndrome, making it challenging to predict patient trajectory and response to treatment. This study aims to identify biological/molecular CS subphenotypes, evaluate their association with outcome, and explore their impact on heterogeneity of treatment effect (ShockCO-OP, NCT06376318).

Methods: We used unsupervised clustering to integrate plasma biomarker data from two prospective cohorts of CS patients: CardShock (N = 205 [2010-2012, NCT01374867]) and the French and European Outcome reGistry in Intensive Care Units (FROG-ICU) (N = 228 [2011-2013, NCT01367093]) to determine the optimal number of classes.

View Article and Find Full Text PDF

Summary: With the increased reliance on multi-omics data for bulk and single cell analyses, the availability of robust approaches to perform unsupervised learning for clustering, visualization, and feature selection is imperative. We introduce nipalsMCIA, an implementation of multiple co-inertia analysis (MCIA) for joint dimensionality reduction that solves the objective function using an extension to Non-linear Iterative Partial Least Squares (NIPALS). We applied nipalsMCIA to both bulk and single cell datasets and observed significant speed-up over other implementations for data with a large sample size and/or feature dimension.

View Article and Find Full Text PDF

The 12-lead electrocardiogram (ECG) is inexpensive and widely available. Whether conditions across the human disease landscape can be detected using the ECG is unclear. We developed a deep learning denoising autoencoder and systematically evaluated associations between ECG encodings and ~1,600 Phecode-based diseases in three datasets separate from model development, and meta-analyzed the results.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) analysis offers tremendous potential for addressing various biological questions, with one key application being the annotation of query datasets with unknown cell types using well-annotated external reference datasets. However, the performance of existing supervised or semi-supervised methods largely depends on the quality of source data. Furthermore, these methods often struggle with the batch effects arising from different platforms when handling multiple reference or query datasets, making precise annotation challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!