AI Article Synopsis

  • FPR2 agonists have shown potential in treating diseases related to inflammation based on successful animal studies.
  • Many synthetic agonists include a phenylurea component, which is crucial for their effectiveness, leading researchers to explore alternative structures, or isosteres.
  • The study reveals the discovery of new FPR2 agonists, specifically benzimidazole and aminophenyloxadiazole compounds, that exhibit strong activity at low nanomolar concentrations.

Article Abstract

Formyl peptide receptor 2 (FPR2) agonists have shown efficacy in inflammatory-driven animal disease models and have the potential to treat a range of diseases. Many reported synthetic agonists contain a phenylurea, which appears to be necessary for activity in the reported chemotypes. We set out to find isosteres for the phenylurea and focused our efforts on heteroaryl rings. The wide range of potencies with heterocyclic isosteres demonstrates how electronic effects of the heteroatom placement impact molecular recognition. Herein, we report our discovery of benzimidazole and aminophenyloxadiazole FPR2 agonists with low nanomolar activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9190041PMC
http://dx.doi.org/10.1021/acsmedchemlett.2c00079DOI Listing

Publication Analysis

Top Keywords

formyl peptide
8
peptide receptor
8
fpr2 agonists
8
discovery heteroaryl
4
heteroaryl urea
4
urea isosteres
4
isosteres formyl
4
agonists
4
receptor agonists
4
agonists formyl
4

Similar Publications

Chemo-resistance in ovarian cancer is currently a major obstacle to the treatment and recovery of ovarian cancer. Therefore, identifying factors associated with chemo-resistance in ovarian cancer may reverse chemo-sensitization. Using isobaric tags for relative and absolute quantitation (ITRAQ) technology, we found a small molecule peptide with annexin 1 (ANXA1) as a precursor protein.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is the most prevalent arrhythmia in clinical practice, and obesity serves as a significant risk factor for its development. The underlying mechanisms of obesity-related AF remain intricate and have yet to be fully elucidated. We have identified FPR2 as a potential hub gene involved in obesity-related AF through comprehensive analysis of four transcriptome datasets from AF patients and one transcriptome dataset from obese individuals, and its expression is up-regulated in both AF and obese individuals.

View Article and Find Full Text PDF

The di-leucine motif in the host defense peptide LL-37 is essential for initiation of autophagy in human macrophages.

Cell Rep

December 2024

Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden. Electronic address:

The human cathelicidin peptide LL-37 induces autophagy in human macrophages. Different post-translational modifications (PTMs) such as citrullination, acetylation, and formylation impact LL-37, yet their effect on autophagy remains unknown. Thus, we set out to study how the cellular source could impact PTM of LL-37 and subsequent effects on autophagy initiation.

View Article and Find Full Text PDF

The formyl-peptide receptor 2 (FPR2) is a G-protein-coupled receptor (GPCR) that responds to pathogen-derived peptides and regulates both pro-inflammatory and pro-resolution cellular processes. While ligand selectivity and G-protein-signalling of FPR2 have been well characterized, molecular mechanisms controlling subsequent events such as endocytosis and recycling to the plasma membrane are less understood. Here we show the key role of the GPCR kinase 5 (GRK5) in facilitating FPR2 endocytosis and post-endocytic trafficking.

View Article and Find Full Text PDF

Atherosclerosis (AS) and Non-alcoholic fatty liver disease (NAFLD) are chronic metabolic disorders with high prevalence and significant health impacts. Both conditions share common pathophysiological pathways including abnormal lipid metabolism and inflammation. Berberine (BBR), an isoquinoline alkaloid, is known for its beneficial effects on various metabolic and cardiovascular disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!