This study was to explore the value of the deep dictionary learning algorithm in constructing a B ultrasound scoring system and exploring its application in the clinical diagnosis and treatment of pernicious placenta previa (PPP). 60 patients with PPP were divided into a low-risk group (severe, implantable) and high-risk group (adhesive, penetrating) according to their clinical characteristics, B ultrasound imaging characteristics, and postpartum pathological examination results. Under PPP ultrasonic image information using the deep learning algorithm, the B ultrasound image diagnostic scoring system was established to predict the depth of various types of placenta accreta. The results showed that the cut-off values of severe, implantable, adhesive, and penetrating types were <2.3, 2.3-6.5, 6.5-9, and ≥9 points, respectively; there were significant differences in the termination of pregnancy and neonatal birth weight between the two groups ( < 0.05); the positive predictive value, negative predictive value, and false positive rate of ultrasound images based on the deep dictionary learning algorithm for PPP were 95.33%, 94.89%, and 3.56%, respectively. Thus, the ultrasound image diagnostic scoring system based on the deep learning algorithm has an important predictive role for PPP, which can provide a more targeted diagnosis and treatment plan for patients in clinical practice and improve the prediction and treatment efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9192257 | PMC |
http://dx.doi.org/10.1155/2022/3452176 | DOI Listing |
Med Phys
January 2025
Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.
Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.
Geroscience
January 2025
Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea.
Background: Superagers, older adults with exceptional cognitive abilities, show preserved brain structure compared to typical older adults. We investigated whether superagers have biologically younger brains based on their structural integrity.
Methods: A cohort of 153 older adults (aged 61-93) was recruited, with 63 classified as superagers based on superior episodic memory and 90 as typical older adults, of whom 64 were followed up after two years.
J Imaging Inform Med
January 2025
Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Disease, Shanghai, 200080, China.
The objectives of this study are to construct a deep convolutional neural network (DCNN) model to diagnose and classify meibomian gland dysfunction (MGD) based on the in vivo confocal microscope (IVCM) images and to evaluate the performance of the DCNN model and its auxiliary significance for clinical diagnosis and treatment. We extracted 6643 IVCM images from the three hospitals' IVCM database as the training set for the DCNN model and 1661 IVCM images from the other two hospitals' IVCM database as the test set to examine the performance of the model. Construction of the DCNN model was performed using DenseNet-169.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Orthopedic Surgery, Arrowhead Regional Medical Center, Colton, CA, USA.
Rib pathology is uniquely difficult and time-consuming for radiologists to diagnose. AI can reduce radiologist workload and serve as a tool to improve accurate diagnosis. To date, no reviews have been performed synthesizing identification of rib fracture data on AI and its diagnostic performance on X-ray and CT scans of rib fractures and its comparison to physicians.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
College of Engineering, Department of Computer Engineering, Koç University, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Turkey.
This study explores a transfer learning approach with vision transformers (ViTs) and convolutional neural networks (CNNs) for classifying retinal diseases, specifically diabetic retinopathy, glaucoma, and cataracts, from ophthalmoscopy images. Using a balanced subset of 4217 images and ophthalmology-specific pretrained ViT backbones, this method demonstrates significant improvements in classification accuracy, offering potential for broader applications in medical imaging. Glaucoma, diabetic retinopathy, and cataracts are common eye diseases that can cause vision loss if not treated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!