Multiphase reactive transport in porous media is an important component of many natural and engineering processes. In the present study, boundary schemes for the continuum species transport-lattice Boltzmann (CST-LB) mass transport model and the multicomponent pseudopotential model are proposed to simulate heterogeneous chemical reactions in a multiphase system. For the CST-LB model, a lattice-interface-tracking scheme for the heterogeneous chemical reaction boundary is provided. Meanwhile, a local-average virtual density boundary scheme for the multicomponent pseudopotential model is formulated based on the work of Li et al. [Li, Yu, and Luo, Phys. Rev. E 100, 053313 (2019)10.1103/PhysRevE.100.053313]. With these boundary treatments, a numerical implementation is put forward that couples the multiphase fluid flow, interfacial species transport, heterogeneous chemical reactions, and porous matrix structural evolution. A series of comparison benchmark cases are investigated to evaluate the numerical performance for different pseudopotential wetting boundary treatments, and an application case of multiphase dissolution in porous media is conducted to validate the present models' ability to solve complex problems. By applying the present LB models with reasonable boundary treatments, multiphase reactive transport in various natural or engineering scenarios can be simulated accurately.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.105.055302 | DOI Listing |
J Phys Chem Lett
January 2025
Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.
Heterogenous single-atom catalysts (SACs) are reminiscent of homogeneous catalysts because of the similarity of structural motif of active sites, showing the potential of using the advantage of homogeneous catalysts to tackle challenges in hetereogenous catalysis. In heterogeneous oxygen electrocatalysis, the homogeneity of adsorption patterns of reaction intermediates leads to scaling relationships that limit their activities. In contrast, homogeneous catalysts can circumvent such limits by selectively altering the adsorption of intermediates through secondary coordination effects (SCEs).
View Article and Find Full Text PDFPhotosynth Res
January 2025
Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
The Orange Carotenoid Protein (OCP) is a unique water-soluble photoactive protein that plays a critical role in regulating the balance between light harvesting and photoprotective responses in cyanobacteria. The challenge in understanding OCP´s photoactivation mechanism stems from the heterogeneity of the initial configurations of its embedded ketocarotenoid, which in the dark-adapted state can form up to two hydrogen bonds to critical amino acids in the protein's C-terminal domain, and the extremely low quantum yield of primary photoproduct formation. While a series of experiments involving point mutations within these contacts helped us to identify these challenges, they did not resolve them.
View Article and Find Full Text PDFNanoscale
January 2025
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China.
Homogeneous mixtures undergo phase separation to generate rich heterogeneous structures as well as enable complex physiological activity and delicate design of artificial materials. Beyond free space, the strong coupling between migrating components and spatial confinement plays a crucial role in determining the essential spatial compartment of phase separation, warranting further continuous exploration. Herein, we report the selective phase separation (SPS) behavior of polymers under a mobile two-dimensional (2D) confinement by graphene oxide (GO) sheets.
View Article and Find Full Text PDFRSC Adv
January 2025
Electronic Material Research Center, Northwest Institute for Nonferrous Metal Research Xi'an 710016 China.
Potassium is a harmful impurity in the rhenium sinter, which adversely affects its mechanical properties by significantly reducing the density of sintered rhenium. Cationic resin is a promising material for potassium removal. In this study, the strong acid cationic exchange resin C160H was pretreated with an HNO solution to enhance its performance in potassium removal.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, 1907 East Gate City Blvd, Greensboro, North Carolina 27401, United States.
An innovative biosorbent-based water remediation unit could reduce the demand for freshwater while protecting the surface and groundwater sources by using saline water resources, such as brine, brackish water, and seawater for irrigation. Herein, for the first time, we introduce a simple, rapid, and cost-effective iron(III)-tannate biosorbent-based technology, which functions as a stand-alone fixed-bed filter system for the treatment of salinity, heavy-metal contaminants, and pathogens present in a variety of water resources. Our approach presents a streamlined, cost-efficient, energy-saving, and sustainable avenue for water treatment, distinct from current adsorption desalination or conventional membrane techniques supplemented with chemical and UV treatments for disinfection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!