The bulk viscosity of dilute argon gas is calculated using molecular dynamics simulations in the temperature range 150-500 K and is found to be proportional to density squared in the investigated range of densities 0.001-1 kg m^{-3}. A comparison of the results obtained using Lennard-Jones and Tang-Toennies models of pair interaction potential reveals that the value of the bulk viscosity coefficient is sensitive to the choice of the pair interaction model. The inclusion of the Axilrod-Teller-Muto three-body interaction in the model does not noticeably affect the values of the bulk viscosity in dilute states, contrary to the previously investigated case of dense fluids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.105.054135 | DOI Listing |
Soft Matter
January 2025
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
The capillary break-up of complex fluid filaments occurs in many scientific and industrial applications, particularly in bio-printing where both liquid and polymerized droplets exist in the fluid. The simultaneous presence of fluid and solid particles within a carrier fluid and their interactions lead to deviations in the filament break-up from the well-established capillary breakup dynamics of single-phase liquids. To examine the significance of the dispersed phase and the internal interactions between liquid droplets and solid particles, we prepare emulsions through photopolymerization and conduct experimental investigations into the pinch-off dynamics of fluid filaments, focusing on the impact of varying concentrations of liquid droplets (before polymerization) and polymerized droplets.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan.
Obesity and metabolic disorders are rising global health concerns, emphasizing the need for effective dietary interventions. High-viscosity dietary fibers such as bacterial cellulose (BC) and guar gum (GG) have unique properties that may complement each other in modulating gut microbiota and metabolic health. This study investigates their effects in high-fat diet-fed mice.
View Article and Find Full Text PDFJ Coll Physicians Surg Pak
January 2025
Department of Stomatology, The Second People's Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China.
Objective: To investigate the effects of bulk-fill, resin-based composite types (high or low viscosity) on the internal adaptation of Class V restorations.
Study Design: Experimental study. Place and Duration of the Study: Hefei Stomatological Hospital, Hefei, China, from October 2022 to December 2023.
Acc Chem Res
January 2025
Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.
ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.
View Article and Find Full Text PDFMolecules
January 2025
Department of Food Plant Chemistry and Processing, Faculty of Food Sciences, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland.
The aim of this study was to compare the functional properties of linseed oil powders made of three types of wall material (OSA starch + maltodextrin, OSA starch + nutriose, and OSA starch + inulin) and two types of emulsion phases (micro- and nanoemulsion). For these independent variables, the properties of the prepared emulsions (flow curves and viscosity) and the resulting powders (encapsulation efficiency, particle size distribution, water activity, bulk and tapped density, Carr's index, color parameters, and thermal stability) were determined. The results showed that emulsion viscosity and most powder properties were affected by the emulsion type.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!