In this paper, a lattice Boltzmann method (LBM) for the fluid-structure interaction of an incompressible neo-Hookean medium is proposed. The objective is to use the lattice Boltzmann method to model the fluid and the solid domains at the same time, and thus avoid coupling two solvers, one for the fluid and one for the structure. The specific case of a neo-Hookean incompressible medium allows us to use a Eulerian formulation for the structure problem, which resembles the Navier-Stokes equation. Then, a macroscopic multiphase equation can be used to model the fluid and structure problems together. Next, the LBM approach is deduced from this macroscopic multiphase formulation of the fluid-structure interaction problem. It consists in extending the LBM to the solid domain by adding a tensor term in the equilibrium function of the collision operator. The effect of the added tensor term is to cancel in the solid domain the viscous fluid constraints and add neo-Hookean constraints. Thus, only the third moment of the LBM is modified, the first two being conserved, and only the constraints in the macroscopic Navier-Stokes equation are changed. The LBM scheme obtained can then model the interaction of a fluid and a structure composed of an incompressible neo-Hookean medium with a single solver for the fluid and the solid. Two additional equations are used, one to track the fluid and solid domains with the Cahn-Hilliard equation, and the other to compute the solid displacement field by a finite-difference scheme. The proposed method is applied successfully on three cases from the literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.105.055307 | DOI Listing |
Bioinspir Biomim
January 2025
Chongqing Jiaotong University, No. 66, Xuefu Avenue, Nanan District, Chongqing City, Chongqing, Chongqing, 400074, CHINA.
The study of fish swimming behaviours and locomotion mechanisms holds significant scientific and engineering value. With the rapid advancements in artificial intelligence, a new method combining deep reinforcement learning (DRL) with computational fluid dynamics (CFD) has emerged and been applied to simulate the autonomous behavior of higher organisms like fish. However, the scale of this cross-disciplinary method is directly affected by the efficiency of the DRL model.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
Thermoelectric technology enables the direct and reversible conversion of heat into electrical energy without air pollution. Herein, the stability, electronic structure, and thermoelectric properties of methoxy-functionalized MC(OMe) (M = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, and W) were systematically investigated using first-principles calculations and semiclassical Boltzmann transport theory. All MXenes, except those with M = Cr, Mo, and W, can be synthesized by substituting Cl- and Br-functionalized MXenes with deprotonated methanol, with stability governed by the M-O bond strength.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, Paris 75005, France.
The driving mechanisms at the base of the clearance of biological wastes in the brain interstitial space (ISS) are still poorly understood and an actively debated subject. A complete comprehension of the processes that lead to the aggregation of amyloid proteins in such environment, hallmark of the onset and progression of Alzheimer's disease, is of crucial relevance. Here we employ combined computational fluid dynamics and molecular dynamics techniques to uncover the role of fluid flow and proteins transport in the brain ISS.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Marine Engineering College, Dalian Maritime University, Dalian 116026, China.
Proton exchange membrane fuel cells (PEMFCs) are being pursued for applications in the maritime industry to meet stringent ship emissions regulations. Further basic research is needed to improve the performance of PEMFCs in marine environments. Assembly stress compresses the gas diffusion layer (GDL) beneath the ribs, significantly altering its pore structure and internal transport properties.
View Article and Find Full Text PDFJ R Soc Interface
December 2024
Université Grenoble Alpes, CNRS, LIPhy, Grenoble 38000, France.
Nitric oxide (NO) is an important vasodilator responsible for maintaining vascular tone in the human body. Its production in endothelial cells (ECs) is regulated by the rise of cytoplasmic Ca concentration and shear stress perceived by blood flow. The increase in cytoplasmic Ca concentration is mainly activated by adenosine triphosphate (ATP) released from red blood cells (RBCs) and ECs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!