Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Various kinds of heterogeneity in solids, including atomistic discreteness, affect the fracture strength as well as the failure dynamics remarkably. Here we study the effects of an initial crack in a discrete model for fracture in heterogeneous materials, known as the fiber bundle model. We find three distinct regimes for fracture dynamics depending on the initial crack size. If the initial crack is smaller than a certain value, it does not affect the rupture dynamics and the critical stress, while for a larger initial crack, the growth of the crack leads to breakdown of the entire system, and the critical stress depends on the crack size in a power-law manner with a nontrivial exponent. The exponent, as well as the limiting crack size, depend on the strength of heterogeneity and the range of stress relaxation in the system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.105.055003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!