Sortases are extracellular transpeptidases that play an essential role in the adhesion of secreted proteins to the peptidoglycan layer of the cell wall of Gram-negative bacteria. Sortases are an important drug target protein due to their involvement in synthesizing the peptidoglycan cell wall of , and these are not found in . In this study, initially, we have performed protein sequence analysis to understand the sequential properties of Sortase C. Next, a comparative protein modeling approach was used to predict the three-dimensional model of Sortase C based on the crystal structure of Sortase C from . Virtual screening with an library of phytochemicals from and molecular docking studies were performed to identify the promising lead molecules. These compounds were also analyzed for their drug-like and pharmacokinetic properties. Subsequently, the protein-ligand complexes of the selected ligands were subjected to molecular dynamics (MD) simulations to investigate their dynamic behavior in physiological conditions. The global and essential dynamics analyses result implied that the Sortase C complexes of the proposed three lead candidates exhibited adequate stability during the MD simulations. Additionally, the three proposed molecules showed favorable MM/PBSA binding free energy values ranging from -13.8 +/- 9.41 to -56.6 +/- 8.82 kcal/mol. After an extensive computational investigation, we have identified three promising lead candidates (CID:13888122, CID:3694932 and CID:102445430) against Sortase C from . The result obtained from these computational studies can be used to screen and develop the inhibitors against Sortase C from .Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2022.2086921 | DOI Listing |
Med Phys
January 2025
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
Background: Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a promising new radiation therapy modality for treating bulky tumors. Ra-carrying sources are inserted intratumorally, producing a therapeutic alpha-dose region with a total size of a few millimeter via the diffusive motion of Ra's alpha-emitting daughters. Clinical studies of Alpha DaRT have reported 100% positive response (30%-100% shrinkage within several weeks), with post-insertion swelling in close to half of the cases.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Orthopedic Surgery, Arrowhead Regional Medical Center, Colton, CA, USA.
Rib pathology is uniquely difficult and time-consuming for radiologists to diagnose. AI can reduce radiologist workload and serve as a tool to improve accurate diagnosis. To date, no reviews have been performed synthesizing identification of rib fracture data on AI and its diagnostic performance on X-ray and CT scans of rib fractures and its comparison to physicians.
View Article and Find Full Text PDFSci Rep
January 2025
College of Physics and Electronic Science, Hubei Normal University, Huangshi, 435002, P. R. China.
We propose a double-cavity optomechanical system with nonreciprocal coupling to realize tunable optical nonreciprocity that has the prospect of making an optical device for the manipulation of information processing and communication. Here we investigate the steady-state dynamic processes of the double-cavity system and the transmission of optical waves from opposite cavity directions. The transmission spectrum of the probe field is presented in detail and the physical mechanism of the induced transparency window is analyzed.
View Article and Find Full Text PDFSci Rep
January 2025
Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro, Santiago de Querétaro, C.P.76010, Querétaro, México.
ABSchalcogenide perovskites (CPs) are emerging as promising alternatives to lead halide perovskites due to their unique properties. However, their bandgap exceeds the Shockley-Queisser limit. By substituting S with Se, the bandgap is significantly reduced, shifting it from the visible into the near-infrared region.
View Article and Find Full Text PDFPLoS One
January 2025
Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.
This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!