AI Article Synopsis

  • Neuronal differentiation involves neuroprogenitor cells becoming polarized, changing shape, and extending axons to form complex dendritic trees, guided by molecular cues to establish synaptic connections.
  • This study examines how the regulation of mRNA translation affects neuronal maturation, focusing on critical hub genes responsible for functions like synaptic vesicle secretion and metabolism in developing neurons.
  • Findings indicate that translational control plays a crucial role in regulating essential processes such as cytoskeleton dynamics, neurite generation, and overall neuronal development.

Article Abstract

During neuronal differentiation, neuroprogenitor cells become polarized, change shape, extend axons, and form complex dendritic trees. While growing, axons are guided by molecular cues to their final destination, where they establish synaptic connections with other neuronal cells. Several layers of regulation are integrated to control neuronal development properly. Although control of mRNA translation plays an essential role in mammalian gene expression, how it contributes temporarily to the modulation of later stages of neuronal differentiation remains poorly understood. Here, we investigated how translation control affects pathways and processes essential for neuronal maturation, using H9-derived human neuro progenitor cells differentiated into neurons as a model. Through Ribosome Profiling (Riboseq) combined with RNA sequencing (RNAseq) analysis, we found that translation control regulates the expression of critical hub genes. Fundamental synaptic vesicle secretion genes belonging to SNARE complex, Rab family members, and vesicle acidification ATPases are strongly translationally regulated in developing neurons. Translational control also participates in neuronal metabolism modulation, particularly affecting genes involved in the TCA cycle and glutamate synthesis/catabolism. Importantly, we found translation regulation of several critical genes with fundamental roles regulating actin and microtubule cytoskeleton pathways, critical to neurite generation, spine formation, axon guidance, and circuit formation. Our results show that translational control dynamically integrates important signals in neurons, regulating several aspects of its development and biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9199153PMC
http://dx.doi.org/10.1186/s13041-022-00940-9DOI Listing

Publication Analysis

Top Keywords

translation control
12
neuronal differentiation
8
genes fundamental
8
translational control
8
control
7
neuronal
6
genome-wide translation
4
control analysis
4
analysis developing
4
developing human
4

Similar Publications

Background: Bed bugs are blood-feeders that rapidly proliferate into large indoor infestations. Their bites can cause allergies, secondary infections and psychological stress, among other problems. Although several tactics for their management have been used, bed bugs continue to spread worldwide wherever humans reside.

View Article and Find Full Text PDF

Rhizobia and legumes form a symbiotic relationship resulting in the formation of root structures known as nodules, where bacteria fix nitrogen. Legumes release flavonoids that are detected by the rhizobial nodulation (Nod) protein NodD, initiating the transcriptional activation of nod genes and subsequent synthesis of Nod Factors (NFs). NFs then induce various legume responses essential for this symbiosis.

View Article and Find Full Text PDF

Longitudinal MRI evaluation of the efficacy of non-enhanced lung cancer brain metastases.

Sci Rep

January 2025

Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, Hubei, China.

Brain metastases (BM) are the most prevalent intracranial malignancies. Approximately 30-40% of cancer patients develop BM at some stage of their illness, presenting with a high incidence and poor prognosis. Our clinical findings indicate a significant disparity in the efficacy between non-enhanced and enhanced lung cancer BM.

View Article and Find Full Text PDF

Pathological cardiac remodeling is a maladaptive response that leads to changes in the size, structure, and function of the heart. These changes occur due to an acute or chronic stress on the heart and involve a complex interplay of hemodynamic, neurohormonal and molecular factors. As a critical regulator of cell growth, protein synthesis and autophagy mechanistic target of rapamycin complex 1 (mTORC1) is an important mediator of pathological cardiac remodeling.

View Article and Find Full Text PDF

Muscular dystrophies (MD) are a group of hereditary diseases marked by progressive muscle loss, leading to weakness and degeneration of skeletal muscles. These conditions often result from structural defects in the Dystrophin-Glycoprotein Complex (DGC), as seen in Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). Since MDs currently have no cure, research has focused on identifying potential therapeutic targets to improve patients' quality of life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!