Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The development of computer-assisted technologies to diagnose anterior cruciate ligament (ACL) injury by analyzing knee magnetic resonance images (MRI) would be beneficial, and convolutional neural network (CNN)-based deep learning approaches may offer a solution. This study aimed to evaluate the accuracy of a CNN system in diagnosing ACL ruptures by a single slice from a knee MRI and to compare the results with that of experienced human readers.
Methods: One hundred sagittal MR images from patients with and without ACL injuries, confirmed by arthroscopy, were cropped and used for the CNN training. The final decision by the CNN for intact or torn ACL was based on the probability of ACL tear on a single MRI slice. Twelve board-certified physicians reviewed the same images used by CNN.
Results: The sensitivity, specificity, accuracy, positive predictive value and negative predictive value of the CNN classification was 91.0%, 86.0%, 88.5%, 87.0%, and 91.0%, respectively. The overall values of the physicians' readings were similar, but the specificity was lower than the CNN classification for some of the physicians, thus resulting in lower accuracy for the human readers.
Conclusions: The trained CNN automatically detected the ACL tears with acceptable accuracy comparable to that of human readers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9199233 | PMC |
http://dx.doi.org/10.1186/s12891-022-05524-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!