The modern and rapid avenue for detecting pathogens provided by molecular genetic techniques including polymerase chain reaction (PCR) was explored in the present study to identify prevalent disease pathogens, from six aquaculture farms and in two commonly cultured fish in Ghana. The specific detection was carried out directly on clinical samples of naturally infected fish (O. niloticus and C. gariepinus) based on syber-mix reaction protocol in traditional PCR. Molecular diagnostic techniques allowed the detection of the six most common and important bacterial pathogens in aquaculture farms in Ghana. Also, three of the pathogens (Streptococcus agalactiae, Streptococcus iniae, and Staphylococcus aureus) were simultaneously isolated in a multiplex reaction. The results indicated 90-100% sensitivity and specificity for each of the six bacterial pathogens tested. Streptococcosis and motile aeromonad septicemia were found to be highly prevalent in most aquaculture farms in Ghana with severity in infections traced to the 85.7% and 14.9% co-infections with all six target pathogens in catfish and tilapia respectively. The prevalence rate of infections significantly correlated with variations in salinity, conductivity, and dissolved oxygen concentrations in the thermal stressed condition of the culture water. Multiplex techniques employed in this study represent one of the first to be used by a fish health laboratory in Ghana for rapid detection of pathogens in diseased fish and could be a useful alternative to the culture-based method for routine diagnosis of fish diseases in Ghana.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-022-03001-wDOI Listing

Publication Analysis

Top Keywords

aquaculture farms
12
rapid detection
8
pathogens
8
detection pathogens
8
cultured fish
8
fish ghana
8
pathogens aquaculture
8
bacterial pathogens
8
farms ghana
8
fish
6

Similar Publications

Gender equality and women's empowerment have been increasingly emphasised in food production systems, including fisheries and aquaculture. Accurate assessment and understanding of the state, progress and changes in women's empowerment in the sub-sectors is required. We applied the project level Women's Empowerment in Fisheries and Aquaculture Index (pro-WEFI), which is based on the project-level women's empowerment in agriculture index (pro-WEAI) to standardize the measurement of women's agency and empowerment in fisheries and aquaculture.

View Article and Find Full Text PDF

Reproductive management: conditioning, spawning and development of Peruvian grunt in southern Peru.

PeerJ

January 2025

Facultad de Ciencias Agropecuarias, Escuela Profesional de Ingeniería Pesquera, Universidad Nacional Jorge Basadre Grohmann, Tacna, Tacna, Peru.

The Peruvian grunt, , is beginning its domestication as a candidate species for marine aquaculture. The optimal management of fingerling production requires precise knowledge on early development. Herein, we report the methodology for capturing and conditioning wild specimens to find a viable broodstock.

View Article and Find Full Text PDF

Excessive total suspended matter (TSM) concentrations can exert a considerable impact on the growth of aquatic organisms in fishponds, representing a significant risk to aquaculture health. This study revised existing unified models using empirical data to develop an optimized TSM retrieval model tailored for the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) (R = 0.69, RMSE = 7.

View Article and Find Full Text PDF

Marine biodiversity loss is a pressing global issue, intensified by human activities and climate change. Complementary to marine protected areas (MPAs), Other Effective Area-Based Conservation Measures (OECMs) have emerged as a key tool to mitigate this loss by providing long-term biodiversity protection. However, while OECMs primarily target specific taxa, they can also offer indirect biodiversity conservation benefits (BCBs) to a wider range of taxa.

View Article and Find Full Text PDF

Given the challenges of overcrowded coastal aquaculture spaces and insufficient production, utilizing saline-alkaline water areas represents a vital strategy to alleviate these bottlenecks. Spotted sea bass (Lateolabrax maculatus), with its formidable osmoregulatory capabilities, is an ideal candidate to develop a saline-alkaline tolerant strain. In our study, genotypic and phenotypic data from 287 L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!