The concept of distinct bonds within molecules has proven to be successful in rationalizing chemical reactivity. However, bonds are not a well-defined physical concept, but rather vague entities, described by different and often contradicting models. With probability density analysis, which can-in principle-be applied to any wave function, bonds are recovered as spin-coupled positions within most likely electron arrangements in coordinate space. While the wave functions of many systems are dominated by a single electron arrangement that is built from two-center two-electron bonds, some systems require several different arrangements to be well described. In this work, a range of these multi-center bonded molecules are classified and investigated with probability density analysis. The results are compared with valence bond theory calculations and data from collision-induced dissociation experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0090607 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!