We explore the merits of linear-response range-separated time-dependent density-functional theory (TDDFT) for the calculation of photoionization spectra. We consider two variants of range-separated TDDFT, namely, the time-dependent range-separated hybrid (TDRSH) scheme, which uses a global range-separation parameter, and the time-dependent locally range-separated hybrid (TDLRSH), which uses a local range-separation parameter, and compare with standard time-dependent local-density approximation (TDLDA) and time-dependent Hartree-Fock (TDHF). We show how to calculate photoionization spectra with these methods using the Sternheimer approach formulated in a non-orthogonal B-spline basis set with appropriate frequency-dependent boundary conditions. We illustrate these methods on the photoionization spectrum of the Be atom, focusing, in particular, on the core resonances. Both the TDRSH and TDLRSH photoionization spectra are found to constitute a large improvement over the TDLDA photoionization spectrum and a more modest improvement over the TDHF photoionization spectrum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0091073 | DOI Listing |
Micromodification in bulk undoped polymethylmethacrylate (PMMA) by single focused (numerical aperture (NA) = 0.25), 1030-nm 250-fs laser pump pulses was explored by pump self-transmittance; optical, 3D-scanning confocal photoluminescence (PL); Raman micro-spectroscopy; and optical polarimetric and interferometric microscopy. Starting from the threshold pulse energy = 0.
View Article and Find Full Text PDFNat Commun
November 2024
CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui, China.
Color centers in silicon carbide (SiC) offer exciting possibilities for quantum information processing. However, the challenge of ionization during optical manipulation leads to charge variations, hampering the efficacy of spin-photon interfaces. Recent research predicted that modified divacancy color centers can stabilize their charge states, resisting photoionization.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2024
University of Würzburg, Institute of Physical and Theoretical Chemistry, Am Hubland, 97074 Würzburg, Germany.
We report vibrationally resolved threshold photoelectron spectra of several sulfur-containing reactive intermediates. This includes the organosulfur radicals CHS, CHS, CHSH, CHS, and SH, which are relevant in atmospheric chemistry and in astrochemical settings. Due to the high reactivity, the radicals were prepared pyrolysis of (CH)S.
View Article and Find Full Text PDFThe homochirality of life remains one of the most enigmatic issues in the study of the origin of life. A proposed mechanism for symmetry breaking involves irradiation by circularly polarized light (CPL). To investigate the photoreaction of amino acids under CPL irradiation, a vacuum ultraviolet (VUV) CPL irradiation system was developed at the synchrotron light source UVSOR-III.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2024
Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland.
Aliphatic hydrocarbons and hydrocarbon-based synthetic polymers are of interest in many fields, but their characterization by mass spectrometric methods is generally limited due to their poor ionizability. Recently, atmospheric pressure photoionization (APPI), combined with halogen anion attachment in negative-ion mode, has drawn attention as a potential method for ionizing various polymers without extensive fragmentation or other unwanted side reactions. In this work, the applicability of halogen anion attachment with APPI was studied using several synthetic polymers, including polyethylene, polypropylene, polyisoprene, and polystyrene, as well as simple -alkanes of various chain lengths.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!