Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9195404PMC
http://dx.doi.org/10.1016/j.immuni.2022.05.007DOI Listing

Publication Analysis

Top Keywords

lipid nanoparticles
4
nanoparticles enhance
4
enhance efficacy
4
efficacy mrna
4
mrna protein
4
protein subunit
4
subunit vaccines
4
vaccines inducing
4
inducing robust
4
robust follicular
4

Similar Publications

Suprachoroidal delivery of viral and non-viral vectors for treatment of retinal and choroidal vascular diseases.

Am J Ophthalmol

December 2024

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD; Johns Hopkins Translational ImmunoEngineering Center, Johns Hopkins University, Baltimore, MD; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD; Departments of Chemical & Biomolecular Engineering and Materials Science & Engineering, Johns Hopkins University, Baltimore, MD; Departments of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD. Electronic address:

Current treatments for retinal and choroidal neovascular diseases suffer from insufficient durability, including anti-vascular endothelial growth factor-A (VEGF-A) agents. It is, therefore, of interest to explore alternative methods that could allow for robust improvement in visual acuity with fewer injections required. Amongst various pre-clinical and clinical studies in the literature, a promising approach is the use of suprachoroidal injection with viral and non-viral gene delivery vectors.

View Article and Find Full Text PDF

Molecular Dynamics Simulation on the Conformational Change of a pH-Switchable Lipid.

Langmuir

December 2024

State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China.

pH-sensitive lipids are important components of lipid nanoparticles, which enable the targeted delivery and controlled release of drugs. Understanding the mechanism of pH-triggered drug release at the molecular level is important for the rational design of ionizable lipids. Based on a recently reported pH-switchable lipid, named SL2, molecular dynamics (MD) simulations were employed to explore the microscopic mechanism behind the membrane destabilization induced by the conformational change of pH-switchable lipids.

View Article and Find Full Text PDF

The main issues with current and traditional cancer therapy delivery systems include a lack of selectivity towards tumors, causing harm to healthy cells, low efficiency in loading drugs, and the inability to visually track the drug's localization after administration. These limitations negatively impact the effectiveness of therapy and result in increased treatment costs. Furthermore, conventional cancer therapies typically target tumor cells through a single mechanism, which eventually leads to the emergence of drug resistance.

View Article and Find Full Text PDF

Enhancing Gene Delivery to Breast Cancer with Highly Efficient siRNA Loading and pH-Responsive Small Extracellular Vesicles.

ACS Biomater Sci Eng

December 2024

Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States.

Small extracellular vesicles (sEVs) are promising nanocarriers for drug delivery to treat a wide range of diseases due to their natural origin and innate homing properties. However, suboptimal therapeutic effects, attributed to ineffective targeting, limited lysosomal escape, and insufficient delivery, remain challenges in effectively delivering therapeutic cargo. Despite advances in sEV-based drug delivery systems, conventional approaches need improvement to address low drug-loading efficiency and to develop surface functionalization techniques for precise targeting of cells of interest, all while preserving the membrane integrity of sEVs.

View Article and Find Full Text PDF

Over the last two decades, lipid nanoparticles (LNPs) have evolved as an effective biocompatible and biodegradable RNA delivery platform in the fields of nanomedicine, biotechnology, and drug delivery. They are novel bionanomaterials that can be used to encapsulate a wide range of biomolecules, such as mRNA, as demonstrated by the current successes of COVID-19 mRNA vaccines. Therefore, it is important to provide a perspective on LNPs for RNA delivery, which further offers useful guidance for researchers who want to work in the RNA-based LNP field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: