Nowadays, the tremendous progress of nanotechnologies and materials science facilitates the fabrication of universal and multifunctional superhydrophobic surfaces on a large scale. Yet, integrating icephobic and anti-bioadhesive properties in an individual water-repellent functional coating, for addressing the difficulties faced by cryobiologists, aircraft, and seacraft manufacturers, is quite tricky but feasible if using nonpolar soot nanoparticles, whose fragility, however, impedes their industrial applicability. Here, we advance the current state-of-the-art to an extent, permitting the introduction of economically affordable and ultradurable non-wettable soot-based coatings. The deposition of rapeseed oil soot, cyanoacrylate glue and fluorine compounds onto different fabrics confers the latter with superior tolerance to harsh mechanical and thermal interventions [e.g., scratching, blade scraping, liquid nitrogen immersion ( ∼ -196 °C), torsion and water jetting], while in the meantime retaining water repellency and oleophobicity. The as-prepared soot fabrics can stick continuously to the selected host surface and favor the recovery of ∼60% of the initial motility of human spermatozoa subjected to cryopreservation or being detached and utilized as standalone non-wettable membranes. Our invention may be considered as the first fundamental stage of safely (without any health concerns) transferring the soot in reproductive medicine and developing enhanced cryogenic and antibacterial medical devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.2c00457 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
Aqueous zinc-ion batteries (ZIBs) are playing an increasingly important role in the field of energy storage owing to their low cost, high safety, and environmental friendliness. However, their practical applications are still handicapped by severe dendrite formation and side reactions (e.g.
View Article and Find Full Text PDFSmall
December 2024
Beijing Key Laboratory of Micro-nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China.
Tribovoltaic nanogenerator (TVNG) is an emerging energy device with the advantages of direct current and high power density. At present, many TVNGs are based on single-crystal materials, which are expensive and fragile during structural processing. Here, a polysilicon-based TVNG for bearing in situ rotational speed sensing is developed, which has the same level of performance and lower cost compared to monocrystalline silicon.
View Article and Find Full Text PDFSmall
November 2024
Department of Energy Storage/Conversion Engineering (BK21 FOUR) for Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
Future energy loss can be minimized to a greater extent via developing highly active electrocatalysts for alkaline water electrolyzers. Incorporating an innovative design like high entropy oxides, dealloying, structural reconstruction, in situ activation can potentially reduce the energy barriers between practical and theoretical potentials. Here, a Fd-3m spinel group high entropy oxide is developed via a simple solvothermal and calcination approach.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
Gradual disability of Zn anode and high negative/positive electrode (N/P) ratio usually depreciate calendar life and energy density of aqueous Zn batteries (AZBs). Herein, within original Zn-free hydrated electrolytes, a steric hindrance/electric field shielding-driven "hydrophobic ion barrier" is engineered towards ultradurable (002) plane-exposed Zn stripping/plating to solve this issue. Guided by theoretical simulations, hydrophobic adiponitrile (ADN) is employed as a steric hindrance agent to ally with inert electric field shielding additive (Mn) for plane adsorption priority manipulation, thereby constructing the "hydrophobic ion barrier".
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2024
Advanced Production Engineering, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands.
The long-term durability of triboelectric nanogenerators (TENGs) remains a main challenge for practical applications because of inevitable material abrasion and wear, especially for sliding TENGs. Herein, an inorganic triboelectric pair composed of diamond-like carbon (DLC) and glass with excellent durability and triboelectric output for sliding-mode TENGs is proposed. This triboelectric pair possesses a low coefficient of friction and little abrasion and accordingly excellent durability (>500 000 cycles).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!