Whitening agents, such as hydrogen peroxide and carbamide peroxide, are currently used in clinical applications for dental esthetic and dental care. However, the free radicals generated by whitening agents cause pathological damage; therefore, their safety issues remain controversial. Furthermore, whitening agents are known to be unstable and short-lived. Since 2001, nanoparticles (NPs) have been researched for use in tooth whitening. Importantly, nanoparticles not only function as abrasives but also release reactive oxygen species and help remineralization. This review outlines the historical development of several NPs based on their whitening effects and side effects. NPs can be categorized into metals or metal oxides, ceramic particles, graphene oxide, and piezoelectric particles. Moreover, the status quo and future prospects are discussed, and recent progress in the development of NPs and their applications in various fields requiring tooth whitening is examined. This review promotes the research and development of next-generation NPs for use in tooth whitening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.2c01412 | DOI Listing |
Molecules
January 2025
Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea.
Trifolirhizin is an important flavonoid glycoside reported from the roots of medicinal plants such as Astragalus membranaceus, Sophora tonkinensis, Ononis vaginalis, Euchresta formosana, Sophora Subprostrate, Ononis spinose, and Sophora flavescens. It is considered one of the important constituents responsible for the various medicinal properties of these medicinal plants. Studies have revealed the multiple pharmacological properties of trifolirhizin: anti-inflammatory, antioxidant, antibacterial, anti-ulcerative colitis, antiasthma, hepatoprotective, osteogenic, skin-whitening, wound-healing, and anticancer (against various types of cancers).
View Article and Find Full Text PDFMolecules
January 2025
Anhui Province Key Laboratory of Bioactive Natural Products, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
Natural products and botanicals continue to play a very important role in the development of cosmetics worldwide. The chemical constituents of a fine active fraction of the whole plant extract of Walp., and the tyrosinase and matrix metalloproteinase-1 (MMP-1) inhibitory and antioxidant activities of this fraction were investigated.
View Article and Find Full Text PDFBraz Oral Res
January 2025
Pontifícia Universidade Católica do Rio Grande do Sul - PUC-RS, School of Health and Life Sciences, Department of Pediatric Dentistry, Porto Alegre, RS, Brazil.
The emergence of toothpastes containing different abrasive and whitening substances has been a constant concern among dental professionals. The aim of the present study was to perform an in vitro assessment of the surface topography of nanoparticle composite resins subjected to simulated brushing with dentifrices. Test samples were prepared with Filtek Universal (3M ESPE), Filtek Bulkfill (3M ESPE) and Z350 (3M ESPE), with 24 samples per resin.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Dentistry, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil.
Objectives: This study aimed to determine whether incorporating nanostructured additives into bleaching agents enhances efficacy and reduces side effects while identifying gaps for further investigation.
Methods: A comprehensive search was conducted in electronic databases, including PubMed/Medline, Embase, Scopus, and ISI Web of Science. Two reviewers independently screened articles based on predefined criteria, resolving discrepancies through discussion or consultation with a third reviewer.
Sci Rep
January 2025
Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, 34 Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
To evaluate the effect of sulfinate salt on the bond performance of a two-step self-etch adhesive to an intracoronally bleached pulpal dentin surface. Intracoronally bleached bovine teeth were treated with or without sulfinate salt (sulfinate agent (SA): Clearfil DC activator) before 2-SEA (Clearfil SE Bond 2) application, while unbleached teeth served as the control (n = 5 teeth). Microtensile bond strength (µTBS) using the bonded surface area of 1 mm at the crosshead speed of 1 mm/min measurements after 24 h storage and thermocycles (TC), degree of conversion (DC) analyses by Raman spectroscopy (n = 3 teeth), ultrastructure of resin-dentin interface (n = 3 teeth), and intracoronally bleached pulp chamber dentin surface (n = 3 teeth) observations by scanning electron microscopy (SEM) were subsequently performed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!