Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The microRNA-29 family members miR-29a-3p, miR-29b-3p, and miR-29c-3p are ubiquitously expressed and consistently increased in various tissues and cell types in conditions of metabolic disease, obesity, insulin resistance, and type 2 diabetes. In pancreatic β cells, miR-29a is required for normal exocytosis, but increased levels are associated with impaired β-cell function. Similarly, in liver, miR-29 species are higher in models of insulin resistance and type 2 diabetes, and either knock-out or depletion using a microRNA inhibitor improves hepatic insulin resistance. In skeletal muscle, miR-29 family upregulation is associated with insulin resistance and altered substrate oxidation, and similarly, in adipocytes, overexpression of miR-29a leads to insulin resistance. Blocking miR-29a using nucleic acid antisense therapeutics show promising results in preclinical animal models of obesity and type 2 diabetes, although the widespread expression pattern of miR-29 family members complicates the exploration of single target tissues. However, in fibrotic diseases, such as in late complications of diabetes and metabolic disease (diabetic kidney disease, nonalcoholic steatohepatitis), miR-29 species expression is suppressed by TGF-β allowing increased extracellular matrix collagen to form. In the clinical setting, circulating levels of miR-29a and miR-29b are consistently increased in type 2 diabetes and in gestational diabetes and are also possible prognostic markers for deterioration of glucose tolerance. In conclusion, miR-29 family miRNAs play an essential role in various organs relevant to intermediary metabolism and its upregulation contributes to impaired glucose metabolism, whereas it suppresses fibrosis development. Thus, a correct balance of levels of miR-29 family miRNA seems important for cellular and organ homeostasis in metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00051.2022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!