A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HYPK promotes the activity of the -acetyltransferase A complex to determine proteostasis of nonAc-X/N-degron-containing proteins. | LitMetric

In humans, the Huntingtin yeast partner K (HYPK) binds to the ribosome-associated -acetyltransferase A (NatA) complex that acetylates ~40% of the proteome in humans and . However, the relevance of HYPK for determining the human N-acetylome is unclear. Here, we identify the HYPK protein as the first in vivo regulator of NatA activity in plantsHYPK physically interacts with the ribosome-anchoring subunit of NatA and promotes N-terminal acetylation of diverse NatA substrates. Loss-of-HYPK mutants are remarkably resistant to drought stress and strongly resemble the phenotype of NatA-depleted plants. The ectopic expression of HYPK rescues this phenotype. Combined transcriptomics, proteomics, and N-terminomics unravel that HYPK impairs plant metabolism and development, predominantly by regulating NatA activity. We demonstrate that HYPK is a critical regulator of global proteostasis by facilitating masking of the recently identified nonAc-X/N-degron. This N-degron targets many nonacetylated NatA substrates for degradation by the ubiquitin-proteasome system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200280PMC
http://dx.doi.org/10.1126/sciadv.abn6153DOI Listing

Publication Analysis

Top Keywords

nata activity
8
nata substrates
8
hypk
7
nata
6
hypk promotes
4
promotes activity
4
activity -acetyltransferase
4
-acetyltransferase complex
4
complex determine
4
determine proteostasis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!