Around 60-80% of radiological errors are attributed to overlooked abnormalities, the rate of which increases at the end of work shifts. In this study, we run an experiment to investigate if artificial intelligence (AI) can assist in detecting radiologists' gaze patterns that correlate with fatigue. A retrospective database of lung X-ray images with the reference diagnoses was used. The X-ray images were acquired from 400 subjects with a mean age of 49 ± 17, and 61% men. Four practicing radiologists read these images while their eye movements were recorded. The radiologists passed a series of concentration tests at prearranged breaks of the experiment. A U-Net neural network was adapted to annotate lung anatomy on X-rays and calculate coverage and information gain features from the radiologists' eye movements over lung fields. The lung coverage, information gain, and eye tracker-based features were compared with the cumulative work done (CDW) label for each radiologist. The gaze-traveled distance, X-ray coverage, and lung coverage statistically significantly (p < 0.01) deteriorated with cumulative work done (CWD) for three out of four radiologists. The reading time and information gain over lungs statistically significantly deteriorated for all four radiologists. We discovered a novel AI-based metric blending reading time, speed, and organ coverage, which can be used to predict changes in the fatigue-related image reading patterns.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2022.3183299DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
radiologists' gaze
8
gaze patterns
8
x-ray images
8
eye movements
8
coverage gain
8
lung coverage
8
cumulative work
8
reading time
8
lung
5

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

ECU, Perth, Western Australia, Australia.

Background: The autophagy lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are key proteostasis mechanisms in cells, which are dysfunctional in AD and linked to protein aggregation and neuronal death. Autophagy is over activated in Alzheimer's disease brain whereas UPS is severely impaired. Activating autophagy has received most attention, however recent evidence suggests that UPS can clear aggregate proteins and a potential therapeutic target for AD and protein misfolding diseases.

View Article and Find Full Text PDF

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE) Rostock/Greifswald, Rostock, Germany.

Background: Using artificial intelligence approaches enable automated assessment and analysis of speech biomarkers for Alzheimer's disease, for example using chatbot technology. However, current chatbots often are unsuitable for people with cognitive impairment. Here, we implemented a user-centred-design approach to evaluate and improve usability of a chatbot system for automated speech assessments for people with preclinical, prodromal and early dementia.

View Article and Find Full Text PDF

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Siemens Heathineers, Princeton, NJ, USA.

Background: The recent breakthrough in monoclonal antibody treatment for Alzheimer's disease (AD) has ushered in a new phase in AD healthcare. However, associated amyloid-related imaging abnormalities (ARIA) present a significant risk to patients, necessitating careful monitoring. Detection by radiologists can be challenging and may suffer from inconsistency.

View Article and Find Full Text PDF

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, DF, Mexico.

Background: The World Health Organization forecasts a population of 2,000 million people over 60 years by the year 2050, with 7% of this population suffering from dementia. Making a constant clinical-technological evaluation of older adults allows early detection of the disease and provides a better quality of life for the patient. In this sense, the research and development of innovative technological systems for the early detection of the disease, its monitoring and management of the growing number of patients with cognitive diseases has increased in recent years, integrating data collection and its automatic processing based on geriatric metrics into these systems using artificial intelligence (AI) methods.

View Article and Find Full Text PDF

Background: To address the rapid increase in the number of persons with Alzheimer's disease or related dementia (PwADRD), we seek to combine the benefits of music intervention with the adaptability of social robotics. Our system, the Music intervention Using Socially Engaging robotics (MUSE) system, seeks to provide a structured music intervention session to a group of PwADRD using the social robot Pepper. As seen in Figure 1, the Pepper robot leads the PwADRD through a 3-step music intervention session.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!