Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Granular sludge is a promising biotechnology to treat sewage contaminated with pharmaceuticals due to its increased toxicity resistance. In this context, this study evaluated the potential of Ca as a granulation precursor and how pharmaceutical compounds (loratadine, prednisone, fluconazole, fenofibrate, betamethasone, 17α-ethinyl estradiol, and ketoprofen) affect granulation. Continuous and intermittent dosages of Ca in the presence and absence of pharmaceuticals were evaluated. The results showed that intermittent addition of Ca reduces the time for anaerobic sludge granulation, and pharmaceuticals presence did not impair granulation. 10% of the granules presented mean diameters greater than 2.11 mm within 93 days with intermittent Ca dosage in the pharmaceuticals' presence. In contrast, no granules higher than 2.0 mm were observed with no precursor addition. The pharmaceuticals' toxicity may have created a stress condition for the microbial community, contributing to more EPS production and a greater potential for granulation. It was also verified that pharmaceuticals' presence did not decrease organic matter, total alkalinity, and volatile fatty acids removals. The 16S rRNA gene analysis revealed taxa resistance to recalcitrant compounds when pharmaceuticals were added. Besides, the efficiency of a granular sludge bioreactor (EGSB) was evaluated for pharmaceuticals removal, and betamethasone, fenofibrate, and prednisone were effectively removed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2022.176 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!