Interaction fidelity is less common than expected in plant-pollinator communities.

J Anim Ecol

Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES Paris), Sorbonne Université, Paris Cedex 05, France.

Published: September 2022

Pairs of plants and pollinators species sometimes consistently interact throughout time and across space. Such consistency can be interpreted as a sign of interaction fidelity, that is a consistent interaction between two species when they co-occur in the same place. But how common interaction fidelity is and what determines interaction fidelity in plant-pollinator communities remain open questions. We aim to assess how frequent is interaction fidelity between plants and their pollinators and what drives interaction fidelity across plant-pollinator communities. Using a dataset of 141 networks around the world, we quantify whether the interaction between pairs of plant and pollinator species happens more ('interaction fidelity') or less ('interaction avoidance') often than expected by chance given the structure of the networks in which they co-occur. We also explore the relationship between interaction fidelity and species' degree (i.e. number of interactions), and the taxonomy of the species involved in the interaction. Our findings reveal that most plant-pollinator interactions do not differ from random expectations, in other words show neither fidelity nor avoidance. Out of the total 44,814 co-occurring species pairs we found 7,877 unique pair interactions (18%). Only 551 (7%) of the 7,877 plant-pollinator interactions did show significant interaction fidelity, meaning that these pairs interact in a consistent and non-random way across networks. We also find that 39 (0.09%) out of 44,814 plant-pollinator pairs showed significant interaction avoidance. Our results suggest that interactions involving specialist species have a high probability to show interaction fidelity and a low probability of interaction avoidance. In addition, we find that particular associations between plant and insect orders, as for example interactions between Hymenoptera and Fabales, showed high fidelity and low avoidance. Although niche and neutral processes simultaneously influence patterns of interaction in ecological communities, our findings suggest that it is rather neutral processes that are shaping the patterns of interactions in plant-pollinator networks.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1365-2656.13762DOI Listing

Publication Analysis

Top Keywords

interaction fidelity
36
interaction
15
plant-pollinator communities
12
fidelity
10
plants pollinators
8
fidelity plant-pollinator
8
plant-pollinator interactions
8
interaction avoidance
8
probability interaction
8
fidelity low
8

Similar Publications

High-fidelity computational fluid dynamics modeling to simulate perfusion through a bone-mimicking scaffold.

Comput Biol Med

December 2024

University of Colorado Boulder, Paul M. Rady Department of Mechanical Engineering, Boulder, CO, USA; Biofrontiers Institute, University of Colorado, Boulder, CO, 80309, USA. Electronic address:

Breast cancer cells sense shear stresses in response to interstitial fluid flow in bone and induce specific biological responses. Computational fluid dynamics models have been instrumental in estimating these shear stresses to relate the cell mechanoresponse to exact mechanical signals, better informing experiment design. Most computational models greatly simplify the experimental and cell mechanical environments for ease of computation, but these simplifications may overlook complex cell-substrate mechanical interactions that significantly change shear stresses experienced by cells.

View Article and Find Full Text PDF

The mechanism of discriminative aminoacylation by isoleucyl-tRNA synthetase based on wobble nucleotide recognition.

Nat Commun

December 2024

State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

The faithful charging of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (AARSs) determines the fidelity of protein translation. Isoleucyl-tRNA synthetase (IleRS) distinguishes tRNA from tRNA solely based on the nucleotide at wobble position (N34), and a single substitution at N34 could exchange the aminoacylation specificity between two tRNAs. Here, we report the structural and biochemical mechanism of N34 recognition-based tRNA discrimination by Saccharomyces cerevisiae IleRS (ScIleRS).

View Article and Find Full Text PDF

Disrupted brain networks underlying high-fidelity memory retrieval in subjective cognitive decline: A task-based fMRI study.

Alzheimers Dement

December 2024

Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.

Introduction: Subjective cognitive decline (SCD) is linked to memory complaints and disruptions in certain brain regions identified by molecular imaging and resting-state functional magnetic resonance imaging studies. However, it remains unclear how these regions interact to contribute to both subjective and potential objective memory issues in SCD.

Methods: To address this gap, task-based imaging studies are essential.

View Article and Find Full Text PDF

Background: All for Them is a theory-based and evidence-informed multilevel, multicomponent program delivered through schools to increase HPV vaccination among medically underserved youth across Texas. Given the potential logistical challenges of program implementation, understanding how to best support the implementation and sustainment of the program is critical. The overall goals of this study are twofold: 1) develop a multifaceted implementation strategy, Implementing All for Them (IM-AFT); and 2) evaluate the impact of IM-AFT on implementation outcomes for schools and healthcare providers to successfully implement All for Them in their respective settings.

View Article and Find Full Text PDF

Multi-talker speech intelligibility requires successful separation of the target speech from background speech. Successful speech segregation relies on bottom-up neural coding fidelity of sensory information and top-down effortful listening. Here, we studied the interaction between temporal processing measured using Envelope Following Responses (EFRs) to amplitude modulated tones, and pupil-indexed listening effort, as it related to performance on the Quick Speech-in-Noise (QuickSIN) test in normal-hearing adults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!