Early in the pandemic of coronavirus disease 2019 (COVID-19), face masks were used extensively by the general public in several Asian countries. The lower transmission rate of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Asian countries compared with Western countries suggested that the wider community use of face masks has the potential to decrease transmission of SARS-CoV-2. A risk assessment model named Susceptible, Exposed, Infectious, Recovered (SEIR) model is used to quantitatively evaluate the potential impact of community face masks on SARS-CoV-2 reproduction number (R ) and peak number of infectious persons. For a simulated population of one million, the model showed a reduction in R of 49% and 50% when 60% and 80% of the population wore masks, respectively. Moreover, we present a modified model that considers the effect of mask-wearing after community vaccination. Interestingly mask-wearing still provided a considerable benefit in lowering the number of infectious individuals. The results of this research are expected to help public health officials in making prompt decisions involving resource allocation and crafting legislation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9349537 | PMC |
http://dx.doi.org/10.1111/risa.13958 | DOI Listing |
Sci Data
January 2025
Division of Trauma and Burn Surgery, Children's National Hospital, Washington, DC, 20010, USA.
Proper personal protective equipment (PPE) use is critical to prevent disease transmission to healthcare providers, especially those treating patients with a high infection risk. To address the challenge of monitoring PPE usage in healthcare, computer vision has been evaluated for tracking adherence. Existing datasets for this purpose, however, lack a diversity of PPE and nonadherence classes, represent single not multiple providers, and do not depict dynamic provider movement during patient care.
View Article and Find Full Text PDFSci Data
January 2025
Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
Retinal image registration is vital for diagnostic therapeutic applications within the field of ophthalmology. Existing public datasets, focusing on adult retinal pathologies with high-quality images, have limited number of image pairs and neglect clinical challenges. To address this gap, we introduce COph100, a novel and challenging dataset known as the Comprehensive Ophthalmology Retinal Image Registration dataset for infants with a wide range of image quality issues constituting the public "RIDIRP" database.
View Article and Find Full Text PDFAm J Hum Genet
January 2025
Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA; Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA. Electronic address:
Genetic summary data are broadly accessible and highly useful, including for risk prediction, causal inference, fine mapping, and incorporation of external controls. However, collapsing individual-level data into summary data, such as allele frequencies, masks intra- and inter-sample heterogeneity, leading to confounding, reduced power, and bias. Ultimately, unaccounted-for substructure limits summary data usability, especially for understudied or admixed populations.
View Article and Find Full Text PDFData Brief
June 2024
Joint Research Center, European Commission, Ispra, Italy.
Urban focused semantically segmented datasets (e.g. ADE20k or CoCo) have been crucial in boosting research and applications in urban areas by providing rich sources of delineated objects in Street View Images (SVI).
View Article and Find Full Text PDFCureus
December 2024
Department of Emergency Medicine, MGM Medical College and Hospital, Navi Mumbai, IND.
Background: During the COVID-19 pandemic, managing respiratory failure in critically ill patients has presented significant challenges. A high-flow nasal cannula (HFNC) has been established as an effective respiratory support modality, offering heated, humidified oxygen at high flow rates. However, concerns persist regarding the potential for aerosol dispersion and the risk of viral transmission, particularly in COVID-19.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!