Theory of chemical exchange saturation transfer MRI in the context of different magnetic fields.

NMR Biomed

Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Published: November 2022

Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is a versatile MRI method that provides contrast based on the level of molecular and metabolic activity. This contrast arises from indirect measurement of protons in low concentration molecules that are exchanging with the abundant water proton pool. The indirect measurement is based on magnetization transfer of radio frequency (rf)-prepared magnetization from the small pool to the water pool. The signal can be modeled by the Bloch-McConnell equations combining standard magnetization dynamics and chemical exchange processes. In this article, we review analytical solutions of the Bloch-McConnell equations and especially the derived CEST signal equations and their implications. The analytical solutions give direct insight into the dependency of measurable CEST effects on underlying parameters such as the exchange rate and concentration of the solute pools, but also on the system parameters such as the rf irradiation field B , as well as the static magnetic field B . These theoretical field-strength dependencies and their influence on sequence design are highlighted herein. In vivo results of different groups making use of these field-strength benefits/dependencies are reviewed and discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/nbm.4789DOI Listing

Publication Analysis

Top Keywords

chemical exchange
12
exchange saturation
8
saturation transfer
8
indirect measurement
8
bloch-mcconnell equations
8
analytical solutions
8
theory chemical
4
exchange
4
transfer mri
4
mri context
4

Similar Publications

Quantum Molecular Dynamics Approach to Understanding Interactions in Betaine Chloride and Amino Acid Natural Deep Eutectic Solvents.

ACS Phys Chem Au

January 2025

Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, 12247-014 São Paulo, Brazil.

The unique properties and versatile applications of natural deep eutectic solvents (NaDES) have sparked significant interest in the field of green chemistry. Comprised of natural components that form liquids at room temperature through strong noncovalent electrostatic interaction, these solvents are cost-effective, nontoxic, and versatile. Betaine chloride-based NaDES, in particular, have shown promise in biocatalysis and sugar extraction due to their excellent properties.

View Article and Find Full Text PDF

Intensification of shrimp farming practices has increased the number and severity of disease outbreaks globally. As a result, diseases have become a significant barrier to profitable and sustainable shrimp production. Shrimp farming practices are reviving in India after its downfall in the late 90s.

View Article and Find Full Text PDF

Ultrahigh Exchange Bias Field/Coercive Field Ratio in In Situ Formed Two-Dimensional Magnetic Te-CrO/CrTe Heterostructures.

Adv Mater

January 2025

Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China.

The exchange bias (EB) effect is a fundamental magnetic phenomenon, in which the exchange bias field/coercive field ratio (|H/H|) can improve the stability of spintronic devices. Two-dimensional (2D) magnetic heterostructures have the potential to construct low-power and high-density spintronic devices, while their typically air unstable and |H/H| lesser, limiting the possibility of applications. Here, 2D CrTe nanosheets have been systematically synthesized with an in situ formed ≈2 nm-thick Te doped CrO layer (Te-CrO) on the upper surface by chemical vapor deposition (CVD) method.

View Article and Find Full Text PDF

Reducing iridium (Ir) loading while maintaining efficiency and stability is crucial for the acidic oxygen evolution reaction (OER). In this study, we develop a synthetic method of sequential electrochemical deposition and high-temperature thermal shock to produce an IrO/Ir-WO electrocatalyst with ∼1.75 nm IrO nanoparticles anchoring on Ir-doped WO nanosheets.

View Article and Find Full Text PDF

Chemical associations of selenium oxyanions in metal oxides derived from layered double hydroxides: Implication for the immobilization of radionuclides.

Environ Res

January 2025

School of Creative Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo 169-8050, Japan; Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan. Electronic address:

Layered double hydroxides (LDHs) can effectively stabilize Se oxyanions, yet the thermal stability of Se oxyanions incorporated into LDHs remains unclear. In this study, calcination products of three types of LDHs loaded with SeO2- 3 or SeO2-4 were analyzed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray absorption fine structure spectroscopy (XAFS) and leaching tests. It has been found that SeO2-4 can be reduced to SeO2- 3 in the Fe-containing LDHs after calcination at temperatures above 450 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!